
WORKSHOPS

ETAPS
2002

April 6-7

DTIC Copy

Designing
Correct Circuits

(DCC'02)

Mary Sheeran (Chalmers university of Technology)

Tom Melham (university of Glasgow)

Distribution A:
Approved for public release;

distribution is unlimited.

Organized by the Formal Methods Group of
Chalmers University of Technology

/^ Fo^:OliM

UNIVERSITY
of

GLASGOW

REPORT DOCUMENTATION PAGE Form Approved 0MB No. 0704-0188

maintaining the data needed, and completing and reviewing the coliection of information. Send comments regarding this burden estimate or any other aspect of this co^ection of information,
inciuding suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188) 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply
with a collection of information if it does not display a currently valid OI^B control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE CDD-MM-yyyyj
09-03-2004

2. REPORT TYPE
Conference Proceedings

4. TITLE AND SUBTITLE

European Joint Conferences on Tlieory and Practice of Software (ETAPS)

6. AUTHOR(S)

Conference Committee

3. DATES COVERED (From ■
6 April 2002 -14 April 2002

■To)

5a. CONTRACT NUMBER
F61775-02-WF002

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5d. TASK NUMBER

5e. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Verimag UMR 5104 CNRS/INPG/UJF
Centre Equation
2, Avenue de Vignate
Gi6res F-38610
France

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

EOARD
PSC802BOX14
FPO 09499-0014

8. PERFORMING ORGANIZATION
REPORT NUMBER

N/A

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER{S)
CSP 02-5002

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

April 6-7 - Designing Correct Circuits (DCC'02)

14. ABSTRACT

The Final Proceedings for European Joint Conferences on Theory and Practice of Software (ETAPS), 6 April 2002 -
14 April 2002

This is a computer and information science conference. Topics include compiler construction; programming language
implementation; language design; specification, design, and analysis of programming languages and programming
systems' fundamental approaches to software engineering; component-based software architectures; middleware
systems' for large scale heterogeneous software federation; formal modeling and specification techniques for
component based software; mathematical models and methods for the specification, synthesis, verification, analysis
and transformation of sequential, concurrent, distributed, and mobile programs and software systems; tools and
algorithms for the construction and analysis of systems.

15. SUBJECT TERMS
EOARD, software engineering, formal metliods

16. SECURITY CLASSIFICATION OF:

a. REPORT
UNCLAS

b. ABSTRACT
UNCLAS

c. THIS PAGE
UNCLAS

17. LIMITATION OF
ABSTRACT

UL

18, NUMBER
OF PAGES

Many

19a. NAME OF RESPONSIBLE PERSON
PAUL LOSIEWICZ, Ph. D.

19b. TELEPHONE NUMBER (Include area code)

+44 20 7514 4474

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39-18

d

"^ .1^

Preface

This volume contains material associated with the presentations at the Fourth Interna-
tional Workshop on Designing Correct Circuits, to be held on April 6*'* and 7*'', 2002, in
Grenoble, Prance. The workshop is a satellite event of the ETAPS group of conferences.
Previous workshops in the informal DCC series were held in Oxford (1990), Lyngby (1992),
and Bastad (1996). These meetings were all very stimulating events, and each made a
contribution to building our research community.

The 2002 DCC workshop again brings together academic and industrial researchers
in formal methods for hardware design and verification. It will allow participants to
learn about the current state of the art in formally-based hardware verification and it is
intended to spark debate about how more effective design and verification methods can
be developed.

Much research in hardware verification now takes place in industry, rather than in
academia. For the long term survival of our field, we must ensure that academics and
industrial researchers continue to work together on the real problems facing microprocessor
designers and those developing System on a Chip solutions. A major aim of the workshop
is to open the necessary communication channels. With the speakers that DCC 2002 has
attracted, it seems likely that the debate will be lively and productive! We look forward
to two great days.

Acknowledgements

We would like to express our gratitude to the members of the programme committee for
their work in selecting the presentations.

MARY SHEERAN AND TOM MELHAM

March 2002

Programme Committee

Per Bjesse (Prover Technology)
Koen Claessen (Chalmers)
John Hughes (Chalmers)
Matt Kaufmann (AMD)
Tim Leonard (Intel)
Tom Melham (Glasgow)
John O'Leary (Intel)
Mary Sheeran (Chalmers/Prover Technology)
Jean Vuillemin (ENS,Paris)

Dominique Borrione (TIMA/UJF,Grenoble)
Nicolas Halbwachs (IMAG,Grenoble)
Steve Johnson (Indiana)
John Launchbury (OGI)
Andy Martin (Motorola)
Alan Mycroft (Cambridge)
Gordon Pace (INRIA)
Satnam Singh (Xilinx)

_^,^tt^^J»'f?f^

-^ Designing Correct Circuits 2002

6-7 April 2002, Grenoble

An ETAPS 2002 Satellite Workshop

Programme

Saturday, 6 April 2002
9:00-9:30 . Several talking points about hardware design and verification

Carl Pixley, Ken Albin and John Havlicek (Synopsys and Motorola)

9:30-10:00 Unifying Traditional and Formal Verification through Property Specification
Harry Foster (Verplex)

10:00-10:30 Verisym: A Tool for Array Verification
Warren Hunt (IBM)

10:30-11:00 Coffee
11:00-11:30 Lava: An Embedded Language for Structural Hardware Design

Koen Claessen, Mary Sheeran, and Satnam Singh (Chalmers University of
Technology and Xilinx)

11:30-12:00 Generic Operators for Circuit Synthesis and Optimisation
Jean Vuillemin (ENS, Paris)

12:00-14:00 Lunch

14:00-14:30 Formal Verification at AMD
Arthur Flatau, Matt Kaufmann, David F. Reed, David Russinoff, Eric Smith, and
Rob Sumners (AMD)

14:30-15:00 Verifying Processor Designs at the RTL Level
Ken McMillan (Cadence)

15:00-16:00 Coffee and discussion

16:00-16:30 An Introduction to Abstract Interpretation
Nicolas Halbwachs (VERIMAG, Grenoble)

16:30-17:00 Modular analysis of circuit description language by abstract interpretation
Charles Hymans (Ecole Polytechnique, Palaiseau)

Sunday, 7 April 2002

9:00-9:30 Embedded Languages for Hardware Compilation
Koen Claessen and Gordon Pace (Chalmers University of Technology and INRIA)

9:30-10:00 Modeling systems with Streams in Daisy/The SchemEngine Project
Steven D. Johnson (Indiana University)

10:00-10:30 Functional design using behavioural and structural components
Richard Sharp and Alan Mycroft (Cambridge University)

10:30-11:00 Coffee

11:00-11:30 A Proof Engine Approach to Solving Combinational Design Automation Problems
Gunnar Andersson, Per Bjesse, and Byron Cook (Prover Technology)

11:30-12:00 State Abstraction Techniques for the Verification of Synchronous Circuits
Yannis Bres, G6rard Berry, Amar Bouali and Ellen M. Sentovich (INRIA, Esterel
Technologies and Cadence)

12:00-14:00 Lunch

14:00-14:30 An approach to the introduction of formal validation in an asynchronous circuit
design flow
Dominique Borrione, Menouer Boubeker, Marc Renaudin, and Jean-Baptiste Rigaud
(TIMA laboratory, Grenoble)

14:30-15:00 Issues in multiprocessor memory consistency protocol design and verification
Ritwik Bhattacharya and Ganesh Gopalakrishnan (University of Utah)

15:00-16:00 Coffee and discussion

16:00-16:30 Specifying and verifying fault-tolerant hardware
Scott Hazelhurst and Jean Arlat (University of the Witwatersrand and LAAS-CNRS)

16:30-17:00 A Stream-Based Framework for Reasoning with STE and other LTL Verification
Formalisms
John O'Leary and Tom Melham (Intel and Glasgow University)

Abstract: Constraint-Based Verification
Authors: Carl Pixley (Synopsys Inc.) Ken Albin and John Havlicek (Motorola Inc.)

introduction

Constraint-Based Verification, Yuan et al. [0], [1], Shimizu et al. [2], [3], Shiple et al. [4] lias
proven to be a practical approacii to verification at tiie nriodule, blocl< and unit levels of
fiardware design and reused hierarctiically at higher levels of design. The technique is to
define a set of Boolean constraints, referencing any nets in the design or monitors (i.e.,
auxiliary deterministic finite state machines), to act as an "environment' for a Design
Under Verification (DUV). Since constraints are not "fonward looking", they can be used to
generate inputs to the design. Stimulus generation can be done efficiently and on-the-fly
during simulation. Since constraints do not involve fake random inputs (i.e., auxiliary free
variables), they can also be used to monitor Inputs to the design efficiently and during
simulation. For fonnal verification, constraints can be used as a model of the environment
of the design for the purpose of model checking, Kaufmann et al. [5].

Nice properties of a constraint-based verification system:

There is a duality between constraint-based simulation generators and monitors as w/ell as
between constraints as assumptions and as proof obligations. Boolean constraints can
easily support both identities. This implies that constraints developed to be simulation
generators for a DUV can easily become obligations for neighboring blocks during block-
level verification and during integration. In addition, constraints developed to generate
inputs for bus interface unit can be converted to monitors to verify the outputs of the same
bus unit. This happened in the development of the Rapid-l/0 bus interface module,
exposing previously unknown bugs. Constraint-based monitors were also used to find
bugs in a PCI bus protocol itself [2]. The multiple roles of constraints support reuse of
information in a fundamental way. By contrast, conventional testbench stimulus drivers
are usually discarded during integration verification. Constraints are normally delivered to
the consumer of Intellectual Property (IP) to be used during IP integration.

Constraints can be developed incrementally and inexpensively as the design matures. In
the earliest stages of design simple constraints can be used to animate the design almost
effortlessly and waveforms can be observed. In our experience, designers have found
bugs at the earliest stages of design, even before assertions (i.e., properties, checkers)
were written. Also, no elaborate, expensive testbench is needed to perfonn constraint-
based simulation. Therefore, designers can use constraints directly without the need for
verification specialists. In addition, the development of constraints is amortized over time.
There is no one-time, up front cost for developing constraints, as is common with
testbench programs.

Of course as the design develops, the input constraints have to become accurate. This is
accomplished by the generation of false negatives by either the simulation or fonnal
engines. It is possible for constraints to be too 'lighf in which case the constraints will be
obsen/ed to fail when they are "flipped" to become checkers (i.e., obligations for
neighboring blocks) during system integration. If constraints are too "loose," an expected
property may fail in simulation or formal verification. An additional benefit of the constraint-
based simulation approach is that constraints formally document the interfaces to DUV's in
a machine-readable way.

Constraint-based verification can be easily integrated into an existing simulation
methodology, e.g., directed or directed-random simulation. This is an important practical
consideration when trying to get a new methodology into existing design groups. Design
groups are generally very conservative. They tend to stick with known methods. It is
unlikely that they will adopt a new methodology if it Is radically different from existing
practice or if it is very expensive to integrate. The way constraint technology can be
integrated into an existing simulation-based methodology is to develop constraints as
checkers for existing, testbench generation programs. Then, when the constraints are
mature they can flip to become generators. Of course, one of the added side benefits is
that with constraints, one can formally model-check the DUV.

Constraint-based simulation is unexpectedly effective in finding bugs. "Comer cases" are
found earlier. Empirical evidence for this is one design project in which constrained
random simulation {C++ based) was used by a team of half a dozen people over a period
of ten months finding only one design bug, while a single person used constraint-based
simulation for only two months and found six (!) bugs confirmed by designers.

Constraint-based verification can be put directly in the hands of designers, rather than
verification wizards, at the module, block and unit levels of design. This implies a much
broader user-base for verification tools and technology. Furthermore, constraints certainly
have all the benefits of an assertion-based methodology. For example, embedded
constraints as checkers are left in the design as booby traps, which locate and isolate
bugs to a particular site for easier diagnosis. It is worth noting that the language of
constraints should be something familiar to designers, such as the Verilog expression
language, in order to be adopted more readily. To be direct, the design community more
readily adopts familiar languages.

Simple Constraint Examples:

Assume the following bus interface unit. Attached are two simple constraints on the
interface to the unit: the environment is not allowed to a request for a request id when one
Is active and the type of a transaction must not be 5 or 7.

Constraint Example

Request

Reqjd[0:l] ■

Req_lype[0:2]'

Req_prio[0:l]

Response

Resp_id[0:l]

•Resp_type[0:l]

Assume: A reqiiesl iiuiv he gi\ eii only if ils itloiiliner is iiol equal lo
the identilier olanv active Iransaeliou.

stiwests

module xyz;

r Definitions Block V

activate(id[0:1])[0:0] = request & (req_id = id);
deactivate(id[0:1])[0:0] = response & (respjd = id);
active_next(id[0:1])[0:0] =

(
deactivate(id)?1'bO :
activate(id) ?1'b1 :

active[id]

varactive[0:15] =
{

active_next(0),
active_next(1),
active_next(2),
active_next(3),

};

Constraint: A request may be given only if its identifier is not equal to the identifier of any
active transaction

constraint(request ? ~active[reqjd]: 1'bl);

Constraint; The type of a request should never be 5 or 7.
constraint(request ? {(req_type != 5) & (req_type != 7)): 1 'b1);

endmoduie

SimGen Constraint Generation

Simulation generation from constraints a la SimGen [2] works very simply. At compile time
the user supplies a set of constraints to the SimGen compiler. The constraints are
compiled either into a Verilog module [4] or into a C program [1] that runs during
simulation. During simulation a user can give a set of biases to the runtime program to
control the likelihood that an input bit will get set to 1 The user can also set an initial state
using Verilog directives or can give the design a synchronizing sequence. At any point the
user can call a SimGen task, which turns the simulation over to the SimGen executable.
After that point SimGen generates simulations compliant with the constraints and biases
every clock cycle.

There is a logical (and very real) possibility that the simulation will encounter a deadend
state, i.e., a state for which there is no solution for the inputs. At that point the simulation
will stop and the offending trace will be generated.

Biblicjgraphy

[0] J. Yuan, K. Shultz, C. Pixley, H. Miller, "SimGen: A Tool for Automatically Generating
Simulation Environments from Constraints", ITG Workshop on Microprocessor Test and
Verification, October 22-23,1998
[1] J. Juan, K. Shultz, C. Pixley, H. Miller, A. Aziz, "Modeling Design Constraints and
Biasing in Simulation Using BDDs", ICCAD1999
[2] James H. Kukula and Thomas R. Shiple, "Building Circuits from Relations" CAV 2000
[3] K. Shimizu, D. L. Dill, and A. J. Hu. "Monitor-Based Formal Specification of PCI",
FMCAD 2000, Austin, Texas.
[4] K. Shimizu, D. L. Dill, C-T. Chou, "A Specification Methodology by a Collection of
Compact Properties as Applied to the Intel Itanium Processor Bus Protocol", CHARME
2001, Livingston, Scotland.
[5] Matt Kaufmann, A. Martin, C. Pixley, "Design Constraints in Symbolic Model Checking",
CAV 1998:477-487

Unifying Traditional and Formal Verification
through Property Checking

Harry Foster
harry@verplex.com

Verplex Systems, Inc

Extended Abstract

In verification, there is no "silver bullet". However, verification methodologies can be improved with more
effective techniques that include a combination of traditional simulation, semi-formal bug-hunting techniques,
and formal property checking. The uni'fying factor, and necessary ingredient, behind successfully combining
traditional with formal verification is property specification (combined with methodology considerations).
This presentation explores property-checking techniques that were used to achieve functional closure (that is,
ensured that a design met its functional specification, from RTL implementation to final layout) on a Hewlett-
Packard highend server ASIC project. The presentation initially explores simulation and formal property
checking used within a functional verification methodology. Then, the presentation will demonstrate how to
combine formal property checking with logical equivalence checking. The combination of these techniques
ensures that both semantic and logical consistency is preserved during design transformations.

Enhancing Functional Verification with Property Checking: Property specification continues to be
problematic, partially due to the lack of a standard property language, but compounded by a lack of
commercial tool support for specification-driven verification. Currently, Accellera (see www.accellera.org)—
whose mission is to drive worldwide development and use of standards that enhance a language-based design
automation process—is addressing the former. It is in the process of adopting a formal property language
through the efforts of its Formal Verification Committee (see www.eda.org/vfv). Two of the formal property
languages under consideration for standardization are the Motorola CBV and the IBM Sugar. These powerful
and expressive formal property languages will enable engineers to:

• specify properties and constraints for formal analysis (for example, property checking)
• specify functional coverage models to measure the quality of simulation
• develop pseudo-random constraint-driven simulation environments derived from formal

specifications [Yuan, et al. 1999]

When unifying traditional and formal verification, developing an effective methodology is equally as
important as the property languages (and formal tools). That is, standardizing a property language, is not the
entire solution. Recently, monitor-based methodologies have emerged as a mechanism for unifying traditional
and formal verification (for example, FoCs-Automatic Generation of Simulation Checkers from Formal
Specification [Abarbanel, et al. CAV 2000]). Other approaches include creating a protocol bus-monitor that
examines an agent's output signals (as the monitor's input) and generates a Boolean correcti onVpui signal,
which is true when agent i is compliant to the specification (for example, Monitor-Based Formal Specification
of PCI [Shinmizu et al. FMCAD 2000] and A Specification Methodology by a Collection of Compact
Properties as Applied to the Intel Itanium Processor Bus Protocol [Shimizu et al. CHARME 2001]).

In this presentation, the author presents his own experience with a monitor-based technique for specifying
RT-level implementation properties, using the Open Verification Library set of assertion monitors [Foster and
Coelho HDLCON 2001]. Data will be presented comparing two similar highend server ASIC design
projects—one with a monitor-based approach to specifying RTL implementation assertions and one without
monitors. The monitor-based methodology consisted of over 4000 RT-level implementation assertions and
over 8000 RT-level functional coverage points (using the same monitor-based form of specification). The
monitor-based approach significantly reduced simulation debug time compared to the non-monitor-based
approach (15 minutes, on average, compared to hours). Furthermore, the methodology demonstrated how the
same form of specification could be leveraged across multiple verification process (for example,
direct/random simulation, semi-formal verification, and formal verification). The monitor specifications
succeeded in identifying 85% of all recorded bugs (15% were identified by other techniques).

Enhancing Equivalence Checking vpith Property Checking: Transformation verification, using formal
combinatorial equivalence checking, has become mainstream for design projects over the last few years.
Although the techniques are extremely useful for ensuring logical consistency, thus minimizing the need for
gate-level simulation, it is not a complete solution for verifying equivalence. Designers must be aware of a
class of functional bugs that cannot be demonstrated on the RTL model due to optimistic behavior of X in
RTL simulation. Furthermore, many synthesis pragmas, such 2&fiill_case and parallel_case create semantic
inconsistency (and potential synthesis bugs) between the pre-synthesis and post-synthesis designs. Gate-level
simulation is required to identify the problem—yet the two circuits will prove logically equivalent.

Although it would be desirable to enforce a restricted coding style to prevent semantic inconsistencies
[Bening and Foster 2001], this is not always possible—particularly when integrating in IP or coding to solve
timing issues. However, property checking can be applied to ensure safe usage of X and synthesis pragmas
within the RTL.

The following Verilog code illustrates one form of semantic consistency problem associated with a.full_case
synthesis pragma.

module mux (a,b,s,q);
output q;
input a, b;
input [1:0] s;
reg q;
always @(a or b or s) begin

case (s) //rtl_synthesis full_case
2'bOl: q = a;
2'blO: q = b;

endcase
end

endmodule

Pre- versus post-synthesis semantic inconsistency occurs when an error in the logic driving the "s" variable
generates a value other than the alternatives 2'bOl and 2'blO. For the pre-synthesis simulation behavior, if
"s" assumes an illegal value (for example, 2'bll, 2'bOO, or 2'bXX), then the "q" variable incorrectly
behaves as a latch in RTL simulation—holding its previous valid value. However, the post-synthesis model
contains no latch. This causes a prospective pre- versus post-synthesis simulation difference, which means
that a functional bug could be missed during RTL simulation; whereas, this same bug could be uncovered
during gate-level simulation (for logically equivalent circuits). Of course, our goal is to minimize the gate-
level simulation bottleneck. Hence, formal equivalence checking is only a partial solution; since it doesn't

ensure semantic consistency. However, formal property checking helps us in these cases by verifying that the
condition resulting in an X assignment would never occur (or would never be observed). Furthermore,
property checking ensures that conditions specified by a synthesis pragma are not violated. For example, on
the Hewlett-Packard highend server project, synthesis pragma violations were identified on the IP and
corrected prior to synthesis using formal techniques.

Conclusion: Using a systematic monitor-based library of checkers to verify general design RT-level
implementation properties, as well as validate semantic consistency during equivalence checking, has proven
beneficial in unifying traditional and formal verification on actual design projects. Time-to-market reduction
has been clearly demonstrated through reducing the debug time associated with traditional verification and
identifying very complex bugs using semi-formal and formal verification.

Thoughts for academia: Based on experience in trying to integrate property checking techniques into both a
traditional and formal verification flow, future research is desirable in the area of coverage associated with
formal proofs (particularly related to bounded proofs). And, creating metrics that articulate coverage in a form
that the designer or traditional verification engineer can relate to is also needed (for example; path coverage,
toggle coverage, line coverage, etc.). Finally, hierarchical partitioning of RT-level proofs, while
automatically deriving sub-block constraints based on witness generation, would be an interesting and
potentially beneficial area of research for automation.

References:
[Abarbanel, et al. CAV 2000] Y. Abarbanel, I. Beer, L. Glushovsky, S. Keidar, Y. Wolfsthal, "FoCs:

Automatic Generation of Simulation Checkers from Formal Specifications," Proceedings of the
Computer-Aided Conference (CAV), pp. 538-542, 2000.

[Bening and Foster 2001] L. Bening, H. Foster, Principles of Verifiable RTL Design, Kluwer Academic
Publishers, 2001.

[Foster and Coelho HDLCON 2001] H. Foster, C. Coelho, "Assertions Targeting A Diverse Set of
Verification Tools," Proceedings of the 10-th Annual International HDL Conference, March, 2001.

[Shinmizu et al. FMCAD 2000] K. Shimizu, D. Dill, A. Hu, "Monitor-Based Formal Specification of PCI,"
Proceedings of the Third International Conference on Formal Methods in Computer-Aided Design, pp.
335-353, November 2000.

[Shimizu et al. CHARME 2001] K. Shimizu, D. Dill, C-T Chou, "A Specification Methodology by a
Collection of Compact Properties as Applied to the Intel Itanium Processor Bus Protocol," In
CHARME'OO, Springer Verlag, pp. 340-354, 2001.

[Yuan, et al. 1999] J. Yuan, K. Shultz, C. Pixley, H. Miller, A. Aziz, "Modeling Design Constraints and
Biasing in Simulation Using BDDs, " Proceedings of the IEEE International Conference on Computer
Aided Design, pp. 584-589, November 1999

0

c5

O

O 0)

•i-i

>
^

^ u
fQ

u 4^

<
03

i- CD
4-J -^

O '^
-'^^ S CXD

—' CO fc

c/) o

C d; en

< QQ

DQ S

O u

_Q

CM 00
h- O

c: 00 00
+3 00 00
u) 00 c»

+->
c
3

E
I

LU

LO LO

+ +

H 2:

c
o

o

0)
>
CO

1=1
0

o a;

Pi
>

^

PQ
U •^

<
a

1-5

+^

US

<

CD

;^

"^ ^ !^
■g ^ r-

f >< f3 -X3 . ,

Si g I-

C <D W

< QQ

DQ S

E
o
P CM CO

_Q r-- o

c: oo CDO
"43 00 00
W 00 00

03 CM CM
<9)

= ZJ

LO LO

+ +

03 I— LL

I
LLI

c
o
CC
o

CD
>

r
<

3D

c
r

c
CD

rrt »—L. to

(L)

a;
>

> o o

u o
u &- u
u
1_

o
CD

> ■4->

■M >, X
+-> fU TO LU to u ^

...Q i_ ——
fXJ < u
O
to
0)

>

fO

Q.

E
u

> ^ 03 (]>
Q) ^_ X

_J < LU X

O

'u
(L)

E
E
o u

c
o

o

>

to

r

23

c

r

c
CD

CO

o

o

'o
is
o
U

/" N
• ^H

Ul
^ O.
T3 *->
-o a
<

u
(U

•4—>
c« >1 • r-(a;

r—(

<

.2
u
03

4->
to

<

O
in

>
<L)

z' \

p
OH

(U PH
T3
O
O
2 o

v y o
U r N

s
l-H

\ J

V
o^ L_^

3
o

O

o
O

00

o
• I—I

a
o

00

o

>
(L)

C
CD

CD

13

03

(U
to
=3

(L)

nj

<u
bO
03
Z3
bO
c

_ro

c
o
03
U

u
Q.
to

c
CD
^^

,CL>

c
.0

CO
o

>

CO

r

c
r

c
0)

CO
O
O

o
+-»
TO
U

CD
>

cu
>
CD

U
TO
<L)

+-»
OJ

-D
CU
1/1
13
O)
ro
10
CD
bO
03
Z3
bO c
fO

o
n3
u

u
cu
Q.
to

+-»
d
cu
cu

a

CO

cu

o
E
+ +

<

cu
bO
fO

bO c
03

OJ

+-»

Z

CTJ

U
■M
CU

vT
+-»
i_

u
co"

E
03
&-.

- bO
OJ .2

^ c;
Sk-

in o

L9
to

ra

cu
SI.

13
+->
U
CU

u
<

to
cu

u
cu

Irz u
. 1-
03
o
u

bO _o
cu
>

Q
X
>

to c
03
i_
+J

I ^_
CU

+-»
to

'bO
cu

to
E
03

bb

_^ u

bO

cu
>

X
>

cu

03

E
cu

u
CO

to
"to c

OJ
^-

I-

to c
o
bO

_>^
O

Q-

-o
cu

_o
o u
Z3
o

to
cu
bO
03
QL

to
"13

CU
1_

sz
ZJ

cu
N

LO
CU

I/)
cu
bO
ro
Q.

to
"D
C
03
I/)
ZJ
o

a B to
I/) (U
CU "O

-D o o
E E

_j
< 1—
(j) rv

to
cu
bO
03
QL

C
o

CO

cu

o
E

+-»

"43
cu

c
o

o

(D
>

^

c
r

c
0)

CO

03
U

CU

>

03

C
(D
E
Q.
E

u
<u
^_

O u
c

'{/)

>
CD

CO c

O)

to
(U
O

E
_Q
O

O

Q

•rH

Q

H

/

H

O

5 ^
I

II
V

w) II
5—1 C

-4—>

-d
00
3

-^1
C/2

1
• 1-H

P • #s •N

-^1 3
a;

c3

a o D

II c^ 'a3
V cd IJC

1—n II II c V I—I (1)
(1> I—H 1 1

^ rO • 1—1^

o cd bf)
c3 a (1)
O (U VH

a
U

/■

•4—>
c3

Q PH

v-l
<D

-t—>
00

• i-H
bX) <D

o
E
CU

E

<u
V-
OJ

10
SI. o
to

'to c:

CD
LO

C

JZ
+->
(U

o
E
to"

c
rn

■M

O
Q_

E

(L)

C
OJ

Q.

O
to
nj

-D
CU

c
CU

+-»
X
CU

CU

to

CO

bO

CU
Q-
o
o u

CU

<u
>

HD u
CU u
to
o CU
Q. 03
o
s- to
DL c

bO c
o C/)

CU
+-» "T3

CU
>

I

o
+j
to

"to
c

U)

f- CL

r
<

c

r
<
c
E
CO

O

c
.2
u

>

TO

I/)

CD
>

CO
D-

13
o

<U
cn
O
Q.

E
o u _

u
+->
X

LU

ro
Z3

ra
>

LU

U
<D

CO

u
"o

E
>^

10 _
(L)

+-»
(D
>
O
U

C
(TJ

4-»
C
<u
E
bjO
ro
c

CD
U
n3

■4—

<u
•4-» c

g

0)
>

CO

r
<

c

r

c
0)
1-
03

o
'■4-»
03
U

Q.

E
X

LU

c
'en

<L)

>^
03
V-
^.
OJ

"D

CD Q.

>
f—

>. CO

fU fO
to

(D

to

CtJ
^-
03

C
03

to

CU
U)
O
Q_
X-

Q_

C
O

03
4-»
C
<D

CD

to
CU

03
hO
O 03 +-» C

-o o
(D +-»

v+_ u
^.^^ O)
Q. ^_

E T3
1

to

c
O)
<L>

_Q

CD
>
03

(/)

h-

(L)

03

0)

o

^ OH
03 I

<L)

to

bO c

to

Q_

13
o

•I—I

'a
<

CU

c

o
c

"cu

03

to

c
CD

E
CU

>j

o
a
0)

CU

H h-

c

CO o

>

CC

^

%

N

o

u

>

Q-

X
LU

if)
(D

ru
>

_Q
rxj

■«-»

to
O

jn
OJ
c

'to

c
o
u
<u
fa

to
(/)
fa

CL
(U

JZ

to

fa
O

■X5

o

. u

o
il

fa

if)

~u
o
c
o
lO

E
1-
0)

c
o

'•4—•

CO o

0)
>
03

^-v ^-s,|

"O 'u'
CN 1- r~> o o S y s y

o c
+-> o c

r-i 1_ o

o 1- o

in
to
(V m

10

-a
XJ
<

+-> ra T3
(TJ c

LU <
d) a; <D o -M 4-J 4-> ra 1_ X- ^

or: ^ ^ ^ ra _Q 'u' "T3

CO
CO

-t-i

a;

-40

CO

E
i-

-to

c
g

V-*
CO o

Q)
>
Cfl

_J r
<

c
r

c

CD

03
U

(L)

>

OJ

CL

X
LU

II

E

03
O

g

o

CD
>

CO

r
<

(L)

C
CD

CO

o
+-»

U

>

<u

ra
X

LU

to
to
<D
\-

-D

n3

C

ra

Q_
Z3

+-»
(U

c
g
CO o

CD
>
cc

r
<

0)

c

CO

(L)
>

03

03

LU

c

cc
o

>
CC

-oo

(U

c 1
o !

4-» 0)1
T3i

03 Oi
U OS

M— P\'
Sk— :
cu
>

>^
OJ
^_
L-

<

CD

Q_

E
OJ
X

LU

CO
—'■

t^ <L)
o U

1/3

o
b
CD
E

(L)
-M

(L)
>

O
CL

<L)
> o

c

CO o

0)
>

^

O)

c
O
4-»
fXJ O^ u

M— w;
1- i

(U
>

>.
fU
:L_
k-

<

<L)
CL

E
03
X

LU

c
g

"to o

>
CO

^=$^

c
(U u

L- LO ~i <D
4-«

3 3
i.
< a

(L)

>

fO

CD

CD
X

LU

00
5 ^-. § o o '5

5 w- 5 o o '5

L 5 o o

5 i» 5 o o

^
5 ^ 5 T—1 o

CO
5 ^— 5 T—1 o

5 ^ 5 o o

5 i— 5 o o

o
5 i— 5 o o

o 1—i

E E

I/)

TO

to
to
0)

1

o
+->

1

-M

<
-a

TO

Q
c

LU
0)

-D
<

'i-

O

E
0)

o
E
a;

TO
Q

Q: ^ ^ ^ 2

CO
CO

-|o

0)

-to

CD

CO

E -*o
O

O

00

C
O

'to o

CD
>
CO

"^

r
<

c
r

c

CO

fXJ
<L)

c
.2
ru
u

CD
>

03

Q.

E
03
X

LU

1

N

C
o
OJ u

_o
>^
o
E
<u
E

m
<L>

Del

c
o
CO o

0)
>
CO

^

u

CD

>

CD
^.

<

Q.

03

LU

%

o

C
O

o

0)
>

CC

<i-:;

r
<

XI

c
r

c
CD

ro
CL)

c
.9
'4-»

u

>

03

Q-
E
OJ
X

LU

CM

o

o

o

o

o

o

o

>5

<

03

fO
+->

a

0)

ro
c

LJJ
OJ

T3
"a
<

OJ

o
4->

CD

o
E
(U

1-1

-M

in

o
E
2

ro
■M
ro
Q
"O
ro
OJ

01

E
P

CO
-to

"^

CO
-to
e

CO

CO

S

o

c
o
E
E
o u
(L)

■M

"D

O
^-
(L)

CD
QL
>^

+->
in

03

CD

c
hjO
to
CL) c

"D
CO

fO o
«4«

<U CD
> >
TO >. -n CO

^**-—■""

f 4-» >
OJ
^

\

In
<L)

_J c O)
■M

!

O

—

CU
^

r
< c/i _o Z3

—
CL)

^ j+f 01 1 tuD
^ 3 CL

1

1 u
03

CO

-3

o u
1

o CD

b
+-^ <L) ^^ U i o CU
C

2 E

3

c
O)
c
o

03
+-»
c

—

Q. A V4-

O)

In

>

CD

E C/i

:

E 0)

i o

H
c

O "43
U TO

O <L)

1^ O -D

c
o

■> c

(U

4-»

>^-

u
Q.
01

1

1
1

0)
+-»
OJ
+-•
Ol

O

1

o u
CU

c
OJ u
01
CU
+J
OJ

CU
+->
OJ
+-»
Ol

O
Ol

O
LU

u o
Q.

Ol
+->
c

1

o
i

(U
01 IM

CD
U

U Ol

O)

c

0)
13
a-
CD

1
C3

\ <u
CU

3
O

JZ

'»- ro <L> <u O) ^ (D „ JZ
<-t-.

<U >. -D c O 3 J£2 4—• o
> <L>

<L>
U

o u ^ 2^CQ:>
M—
o c O)

03

01

<L) *
c <u

o V^ c
o
QL

o
'4-»
03

c
CU
+-»

&-
^ Q. 13 03 4-» U , R-^ 01 13 _n

1 < X
<L)

OJ

01

E

(L)

C
o u

_c
+-»

DL

+-»
O)

CL
CD

+->
Oi

U
03

c
.a § /

11-

< o

> <

c

"+J
03

E
'oi

"o
_Q

s 1
.E ■§
_c >
u >^

o
CD

+-»

O)
c
o

<L)

u
03
CD

o
Ll_

C

<

3 (D
—

o
01

E
O)

? 1 — <

-a
CU

u
)l_ Ol V-

3 CU
X- to o _c

;
< < LL Q u

i
• • • •

f:

i i f
\v M
^^ m«--iiaaHiiMimaj=*au»=u.«3oiE»'w- r-.—™..™„ —..,„ ir«K»t3i«aciaiT3ri«^i™«««B i™ -r=««:no«»»-=^»^B»B™iiJt™v-wrtt.!J^^ 3=™v:™,-=v:-^i-.w. «™»«.;a ti-ir™ii=.«.i^r.™ —3^

< LLI

u

c
r

c
CD

CO

I-

c:
O

u
03

+-»
X

UJ

c
o

-l-J
ro
U

>

OJ

>

to

c
<L)
D
D"
<L)
I/)
C
o u
U)
c

(U o
u ■>->

^
1-

If)

+-» OJ
L_ ,

O
4-J
to
1-

LU

O «-»— co +->

1
o

■M
c j^

L- ■ —

-D
o

+-» u
_J

03 a:
"D +J i,_

(L) o
I/) O

c
o

E in to

o I/) (L)
1- c >

03 C
-D ^ o

(L) +-» u
~o 03 -o

^_ U Q)
4-J ■ ■"" +J
c -C 03
o u

1_ — u 03 o
— — <u 4->

3
■4-> X <
to 1
>. 1

CO

+-> c
u o
OJ CO
Q.
03 k.

U 0)
>

—— >^
OJ ni

1-

<
cn
D

-D
C

<^c

■-5S?

c
o

tn

C

■>

1 3
r m
Q

I .2

u

CD
>

I/)

03

03

ZJ

fa

bO
"ro

+-»
CO

to

03 u
CO

r= oj

>

ru
•4-«
03

03
<L>
D-
Q.
03

03

E

o
CL

Z3

E
lO~
>,
03
X-
^-
03

N

U

'bO
_o
-D
CD
-D
-D
CU
_Q

E

co"

<

bO c

C
03

bO

03
(L>
i_

CO
Z5
O
O) c
OJ

CO
+-» c
(U c
o
Q.

E
o u

O)
+-»
U
0) c
c
o
u

"Q3
c
c
03

u

o

u
en

^ o -m

C
03

bO c

o
(L)
N
CO

\-
O
4-J
I/)

CO

CO

(U
N 03

C
o
CL
co
0)
X-
^_
O u

bO c

c
>
(U

u
to
(U
-D

C
_bp
'in
cu
-o
<u
+-»

E
o u
fT3

bO .E •,-7;
03

o u

03
Kf)
CO
CD
U
CD

CO

E
CD

o
CD

03

CD
>

o
c
CO
CD

■M

SB.
CO c
03

CO

o

c
03

CO o o
O
o"
T-H

CD
>
03

CO

03

CO
CD
bO
03
D.

CO
O

CD
_Q

>^
03

in

o
03
U

U
CD
Q.
CO

>.
03

< <

CD
U
C
03

E

CD
Q.

O

c
03

03
U

U

U

O

CO
■t-J
U o a;

D. bj=
- 03
■"■ CD
in C
in
CD bO
^^ c
r3 CD
CD
CD LJJ
Q. f-
CO co

13
o

u CD
ci;

1.. Q.
13 CO
u c u
03 O

+-» c 3
o u

CD
u
03

X
CD

CO

03

o
03
U

CD
>

CD

Z3
CO

c
O
CO
in
CD

c
o
'to o

CD
>

CO

^

LU

i .^
03
I/)

CO

<U

u-
CL)

to
c

OJ

CD

<L)
cn a;

o —

Z3

(L>

O
O

o

"u
cu
E
E
o u

0)
_Q
fa

■>

_>>

"u
^_
CD

E
E
o u
OJ

cu
4-»
nj
0)

u

c
(L)
4-»

o
O

+-»

c
.2
"■»-»

03

+-»
I/)
C
o
E

-D

fU

<L)
■M o

E

OJ

(U
CO

E
fa

fa
Q

co"
E
fa

<

C
CU

o
o

+-»

fa

<

c
fa

E
o

_3

~c3

C
(U

c

o
>

fa
c

'■M

a
fXJ

>^
m

(U
+->

Q.

E
O sJ
U CD

U
s^
CD

O
O

+-» <-'
CD -^

QQ LU

CD

if)
CO

>^
fctO

_o
O

o

(D

E
-o
c
fO

bO
_c
'i_
cu
cu
c

Q-
CU
CD

-D

+->
13

J3

CLT
u
c
a;
'u

CO

Q-
CU
CU

U
Z5
CO

CO

O
+-»
c

bO
_o
O
c

_£:
u
cu

+-»
c
o

'4-*
fa
u

cu
>
cu

ftJ

TU

_ fXJ
bO -c
c
cu

fa iq

£ -2 O ^3
■t: cu

E
cu

bO
fa

c
cu
>
cu
bO
c

fa

bb
cu

CO
cu

"5
CU

O
o

_to
O
O

CU

CT
CU
1-

.2
cu

~fi
c
0

-a
fa

fa
cu

+->
fa
cu

O
O

+-»
10

bO —

c
o
fa ^_
bO
cu

fXJ

co"

4-»
c
o
E
X

'in c

■^ '>^

cu Q.

■^ o
r- »-

_= bO

cu ^-
fa
u
cu

_Q

10
13

U
+->
CU

U)
CU

E
fa
c
CO*"

+-»
fa
E

y^

in"

O
bO

cu
_N
'10

cu

CO
tn -o

cu
fa
cu cu

-O

<D CO
£1

t— u

CO

c
g

o

0)
>

CO

Lava: An Embedded Language for Structural Hardware

Design

Koen Claessen, Mary Sheeran, and Satnam Singh
{koen,ms}@cs. Chalmers. se, Satnam. Singh@xilinx. com

Introduction
Lava is a tool to assist circuit designers in specifying, designing, verifying and
implementing hardware. It is realised as an embedded language - a collection of
libraries written in an already existing language, called the host language. These
libraries provide the hardware designer with basic building blocks for creating
circuit descriptions. In the case of Lava, the host language (the glue to put
the building blocks together) is the modern functional programming language
Haskell [2].

In the talk, we argue in favour of the embedded language approach we have
taken. The power of our approach comes from the fact that circuit descriptions
in Lava are first-class objects in Haskell. This means that:

Circuit descriptions can be generated. We can write functions, that,
given some parameters, generate a circuit. We can for example use lists and
recursion to describe generic or size-independent circuits.

Circuit descriptions can be passed around as parameters. We can
write functions that take circuits as parameters, and combine them to produce
new circuits. We call these connection patterns.

Circuit descriptions can be analysed and transformed. We can define
functions that inspect the structure of a circuit and generate a result. An ex-
ample of this is a longest combinational path analysis. The result of such a
function can also be another circuit, allowing us to define circuit transforma-
tions. Examples of this are retiming transformations.

Apart from the usual advantage that higher-order functions bring in pro-
gramming, namely high-level code reuse, we get one more advantage from them
in Lava: We can also give our connection patterns a layout semantics. For ex-
ample, serial composition, written as ->-, takes two circuits, and produces one
circuit which feeds its input to the first circuit and the corresponding output to
the second. In addition, the layout semantics says that the first circuit should

be laid out to the left of the second. Using a small amount of layout-aware con-
nection patterns, and recursion, we are able to concisely describe very complex
circuit layouts, such as butterfly networks [1].

Circuit descriptions can be processed in several different ways. We can sim-
ulate circuits, by running the Haskell functions corresponding to circuits on real
inputs. We can also symbolically evaluate circuit descriptions, by instantiating
parameters and providing symbolic inputs, to produce a low-level description
of the circuit in another language. Thus, we can generate structural VHDL or
EDIF, giving a route to implementation on a Field Programmable Gate Ar-
ray (FPGA), as well as access to a variety of standard circuit analysis tools.
Furthermore, we have equipped the Lava system with a property description
language, with which we can describe properties about the circuits. Again, we
use symbolic evaluation to generate logical descriptions of the circuits, which
we can feed to a wide range of external model checking tools and automatic
theorem provers. The output of these tools can be read back in, providing a
way of scripting verification strategies from within the Lava system.

The work on Lava started several years ago, and has gone through a number
of major revisions, but now we feel we have come to a point where a final design
of the system can be presented. We have built a complete system in which real
circuits can be described, verified, and implemented; it allows elegant circuit
descriptions, formal and informal reasoning about the circuits, and a route to
fast implementations on FPGAs. Future enhancements to the system are likely
to be in the form of extensions to the embedded language, which will in turn
demand new analysis methods. Lava has been used at Xilinx to design a wide
range of circuits, such as several constant coefficient multiplier core generators
for making high speed fully placed multipliers for use in graphics and signal
processing applications, 2D convolvers for use in real-time 2D image correla-
tion, sorting cores for calculating median values in image processing circuits,
and distributed arithmetic implementations of trigonometric functions like sine,
cosine etc. as well as filter functions.

To illustrate how designing in Lava can be very different from designing
in a conventional hardware description language, we present the example of a
constant coefficient multiplier (KCM) core targeting to Xilinx's Virtex FPGAs.
By core we mean a generic (or parameterisable) circuit that efficiently performs
high speed multiplications with predictable timing and regular floorplan. Such
circuits are difficult to describe in a language like VHDL because it lacks several
important features:

• In VHDL, circuits cannot be passed as parameters and returned as re-
sults;VHDL is not higher order. In Lava, the fact that the language is
higher order allows us to construct a constant coefficient multiplier core
by computing a circuit that depends on the constant coefficient.

• In VHDL, one cannot easily compose circuits together algorithmically. In
Lava, we can produce a constant coefficient multipHer core with a variety
of parameters (e.g. sizes of inputs, signed/unsigned data specification,
registering options) by implementing an algorithm that determines which

specific architecture is best suited for a given instance. It is possible to
write such descriptions in VHDL but many core developers resort to writ-
ing core generators in conventional programming languages like C and
Java to generate VHDL or Verilog for a specific instance. Our approach
has one language and description which is effective for describing both
circuits and algorithms that compute circuits.

• In languages like VHDL, there is no standard and flexible mechanism for
describing circuit layout. Specifying a good layout for a core allows perfor-
mance to be tuned and predictable and also allows a core to have a regular
floorplan, which makes it easier to use in a larger system. Lava provides
a very flexible and powerful layout mechanism, intimately associated with
the combinators that compose behaviour.

New hardware description languages like SystemC rectify some of the inflexi-
bilites of conventional hardware description languages like VHDL and Verilog.
For example, in SystemC, it is much easier to algorithmically compose structural
circuit descriptions, since the full power of the C++ language is available. In
SystemC, one can also exploit the template mechansim (which provides a more
flexible form mechanism for specifying generic circuits than that in VHDL) and
inheritence toproduce more general and extensible circuit descriptions. How-
ever, the features for supporting general descriptions in Lava (namely higher
order functions and the polymorphic type system) are far stronger than their
equivalents in SystemC and there are still many types of circuit descriptions
which are elegantly rendered in Lava, but would be cumbersome in SystemC.
Furthermore, there is still no standard mechnaism for describing circuit layout
in SystemC.

The constant coefficient multiplier core

The constant coefficient multiplier core works by performing several 4-bit multi-
plications, the results of which are combined in a weighted adder tree to produce
the final product. This is an efficient architecture for 4-input look-table based
FPGAs since a 4-bit multiplication can be realized effectively with a look-up
table. A block diagram of such a multiplier is shown in Figure 1. This KCM
multiplies an 11-bit signed dynamic input A = aio ■.. ao by an 11-bit constant
coefficient K. The multiplication AK is performed by composing the results of
several four-bit multiplications i.e. AK = —2^aio...8-K^ • ■ ■ + 2'*a7...4X + a3_„oK.

The rightmost table multiplies the lower four bits of the inputs by the K
constant coefficient i.e. X = a3,„oK and the middle table computes Y = a7„AK
where both 03...o and 07...4 are treated as unsigned numbers. The leftmost table
calculates Z = {aio,aio,aQ,as)K where {aio, 0.10,0,9, as) is treated as a sign-
extended bit-vector. To calculate the final results, the partial products Y and
Z have to be appropriately weighted before addition. A weighted adder tree is
used to compose the partial products and the size of the intermediate adders
is reduced by reading off directly the bottom four bits of the partial product

4 by 11 KCM
15xROM16X1

11. :>;, H-, •!.. ;i, ;i. :i :i„

fill iili llil
4 by 11 KCM

15xROM16X1
4 by 11 KCM

15xROM16X1

I Ibby n fail adder {

I Ibby 12 bil adder I ,_^

P.,,.

Figure 1: The structure of a constant coefficient multiplier

X and the result of adding the remaining bits of X to Y. For the pipelined
version of this multiplier, we again exploit our ability to calculate circuits to
place registers on the intermediate wires, making sure to balance the delays.

The adders in our KCM design are simply described by parameterised op-
timised adders from the Lava arithmetic library. But how should one describe
the look-up tables for the 4-bit multiplications? The beauty of Lava is that we
can write an generator circuit that takes as input an arbitrary Haskell function
that maps any value that can be represented to a single bit and returns the cor-
responding look-up table circuit realisation of that function. Here, we have an
example of mapping a circuit from one high level representation in our language
to another more detailed representation (of the implementation) in the same
language, with the algorithm for performing this mapping also being written in
the same language.

The specific function that is used in the KCM implementation is called
roml6x and has the following Haskell type:

roml6x Int -> [Int] -> (Bit, Bit, Bit, Bit) -> Bit

The function takes a size argument specifying the size of the table, a list of
numbers to be represented by the table and a four bit value that at run-time
determines which value of the table is present at the output. A function that
performs a 4-bit constant coefficient multiplication can be represented by such a
circuit builder since it can be realised as a table look-up of integer values using
a 4-bit index.

Using the romlSx higher order circuit builder, we can define an unsigned
four bit constant coefficient multiplier core as:

unsignedFourBitKCM :: Int -> [Bit] -> [Bit]
unsignedFourBitKCM coeif addr

= romiex maxwidth multiplication.results padded_addr

where
padded_addr = padAddress addr
nr.addrs = length addr
multiplication_results

= pad.width 0 16 [coeif * i I i <- [0..2"nr_addrs-l]]

maxwidth
= maximum

(map unsignedBitsNeeded multiplication.results)

The calculation of the constant coefficients is represented directly in Haskell

by the expression

[coeif * i I i <- [0..2~nr_addrs-l]]

This expression cycles i through every value that can be represented using the
given number of address bits and computes that value multiplied by the con-
stant coefficient. This illustrates how Lava provides a multi-level language. At
the highest level, one can write expressions using the full power of the Haskell
programming language. At the next level, one can write aribitrary Haskell ex-
pressions to transform such expressions (in this case by exhuastive simulation)
into a domain specific representation (combinators and primitive circuit ele-
ments represented in the core Lava language). The remainder of the definition
computes the details of word-lengths.

An unsigned KCM can be made by using several 4-bit unsigned KCMs as

follows:

• The input bus is chopped into groups of 4-bits. This is achieved using the
chop list function.

• Each of these 4-bits is multiplied by the constant coefficient using the
unsigedFourBitKCM circuit. This can be easily done by the expression
hmaP (unsignedFourBitKCM coeif) which places the 4-bit KCMs next

to each other.

• The results of each of these partial products have to be suitably weighted
to allow them to be combined. This is done by zipping the partial products
bus with the list [20, 24, 28...]

• A weighted adder tree is used to sum the partial products. Combinational
and pipelined KCMs will have different adder trees but we would like to
abstract over this difference so that one generic unsigned KCM function
needs to be written. This can be done by passing the required adder tree
circuit as parameter.

• The output of the weighted adder tree circuit is a pair which has 20 as the
first element and the final product as the second element. Since we only
want the product we just use the snd function to project it out.

addr

f - r ? c c

n n 7* ^^2° '
' addr x coief

chop 4 hmaP (fourBitKCM coicf) insertWeights adderTree snd

Figure 2: Architecture and Layout of an unsigned KCM

In Lava the steps described above can be represented by the following code:

unsignedKCM adderTree coeif
= chop 4 >->

hmaP (unsignedFourBitKCM coeif) >->
insertWeights >->
adderTree >->
snd

This architecture is illustrated in Figure 2. The combinators used to compose
the behaviour of the individual circuit components also compose the layout of
the circuit. An example layout of the Lava generated KCM is shown in Figure 3.
This specific KCM has been used in several real digital signal processing and
image processing applications.

Conclusion

In conclusion, we observe that despite the emergence of new hardware descrip-
tion languages like SystemC there is still a role for declarative hardware de-
scription languages that provide multi-level descriptions within one framework.
The ability to write arbitrary functions in a programming language and then
pass these functions as arguments to circuit builders is a particularly powerful
technique. This has been demonstrated successfully in the design and imple-
mentation of a constant coefficient multiplier core, and is typical of the way in
which Lava is used in practice. We feel that we have only just begun to exploit
the fact that we have a multi-level language. There are exciting possibilities
for doing formal verification during circuit generation, instead of afterwards, for
instance. In similar style, one can imagine analysing circuits for non-functional
properties like timing, wire length or power consumption during the process
of generating the final implementation. Having a multi-level language gives an
extra phase on the way to a final circuit implementation, and so opens the way
to performing various analyses, including formal verification, in new ways.

IFIIICOl

unsignedFourBitKCMs adderTree

Figure 3: Layout of a KCM on a Xilinx Virtex FPGA

References
[1] Koen Claessen, Mary Sheeran, and Satnam Singh. The design and verifica-

tion of a sorter core. In CHARME. Springer, 2001.

[2] Simon Peyton Jones and John Hughes et al. Report on the programming
language Haskell 98, a non-strict, purely functional language. Available from
http://haskell.org, 1999.

Generic Operators for Circuit

Syntliesis and Optimisation.

Jean Vuillemin'

We highlight a technique for describing circuits within languages which support objects and
generic operators - such as PAM-DC, Jazz or Lava. The source code is written in terms of
generic operators applicable to all types of inputs. In the examples DCT and FHT chosen for
illustration, they are simply the arithmetic operators: +, -, * and integer constants.

If we apply our source code to inputs of type int - the built-in integer type in the language -
we obtain a software simulator for our target circuit. This simulator is efficient because it
relies on efficient arbitrary precision arithmetic rather than bit level operations as normal
circuit simulators would do. Having such an efficient software specification at our disposal is
handy for: (a) verifying - in an exhaustive manner - if a particular choice of representation
for the DCT coefficients meets or not the JPEG standard; (b) providing the physicists - who
are the end-users of the detector in which FHT takes place - with an accurate and efficient
software model, and let them adjust the critical parameters in the final algorithm.

If we apply the very same source code to inputs of type net - this type is built-in in Jazz -
we obtain a bit-serial (base 2) circuit for implementing our algorithm: it has the same bit-
wise behaviour as our previous simulator, modulo the I/O bit-order. Based on area and
clock-speed, this would be the prime choice of representation for an ASIC implementation.

If we now apply our source code to inputs of type serialk - each arithmetic operation has to
be constructed for this type - we derive digit-serial (base 2"^) circuits for our application.
Each value of the integer parameter k=l,2... corresponds to a different Area/Time trade-off
This tool proves critical in finding the sweet spots for various implementations in various
technology. Points in the curve are been found optimal for: k=2 with X3K, k=3 with X4K
and k=4 with CHESS. Another input type is useful: the limiting case when k=* is equal to
the maximal binary length among operands in the application, and from which we
automatically derive the bit-parallel circuit implementation. So we can systematically
explore points in the Area/Time domain, from the smallest circuit k=l to the largest k=*.

To fiirther explore the hyper-serial part of this domain, we need two more technological
ingredients: block-memories and dynamic-instructions. Both features are present in CHESS;
with a regular FPGA, dynamic-instructions can be realized by devoting some inputs to
coding the operation. They let us implement the type hypert fi"om which we derive hyper-
serial (base 2'"^) circuits: each gate in the circuit for k=l/2 realizes two gates fi-om the bit-
serial circuit k=l; each gets computed on alternate cycles, and one bit of memory is required
per disappearing gate so as to store the intermediate value. This is done in a DCT connected
to a single ported memory. Larger value of 1/k lead to smaller circuits performing more
sequential processing through block-memories. The synthesized circuit in the limit k=l/* is
completely sequential, just as a software bit-level simulator.

^ Ecole Normale Superieure. 45 rue d'Ulm, 75230 Paris Cedex 5, France.

Formal Verification of
Microprocessors at AMD

April 6, 2002

Arthur Flatau

Matt Kaufmann (speaker)

David F. Reed

David Russinoff

Eric Smith

Rob Sumners

Advanced Micro Devices, Inc.

AMD, the AMD logo and combinations thereof, and AMD Athlon
are trademarks of Advanced Micro Devices, Inc.

[Today at AMD, page 1 J

• Traditional simulation-based methods:

— Block-level "whackers"

— Full-chip directed tests written by hand

— Full-chip test programs written by pseudo-random
test generators

— Various "checkers" monitoring simulation for poten-
tial bugs

• Boolean equivalence checking for comparing
RTL (Register-Transfer Logic) models with cus-
tom gate-level models

— Synthesis alone does not meet all our needs

[Today at AMD, page 2 J

• Formal verification using the ACL2 theorem-
proving system

— Proofs of correctness of RTL floating-point modules

o SpecificaUy, proofs are done on the output from
translation tools applied to the RTL.

— Proofs of correctness of higher-level algorithms im-
plemented in RTL

— Ongoing improvement of ACL2 itself and libraries of
lemmas used to "program" ACL2

This talk focuses on theorem proving and the
consideration of more automatic formal meth-
ods.

[ACL2 J

• ACL2 [1] is "A Computational Logic for Ap-
plicative Common Lisp"
(descendant of Boyer-Moore theorem prover)

• Authors: Matt Kaufmann and J Moore

• Interactive prover with induction, conditional
rewriting, and decision procedures (arithmetic,
equality. Boolean logic)

— "Programmed" with theorems proved by the user,
usually stored as rewrite rules.

• Publicly available at:
http://www.cs.utexas.edu/users/moore/acl2

— Includes numerous papers and proof scripts, and
links to ongoing work

• [Plug] ACL2 Workshop immediately follows
this DCC Workshop.

[Some AMD Formal Verification History J

We have emphasized automated theorem prov-
ing.

• 1995-96: Division and square root algorithms
for AMD-K5 microcode[3, 5]

• 1997-present: Proofs of floating-point algo-
rithms and actual RTL that use ACL2 on the
AMD Athlon"^"^ processor and its derivatives [6,
7,8]

— We have a translator from our proprietary RTL to
ACL2 [7] that enables RTL proofs.

• 2001: Completed some protocol-level proofs

[Floating-point Verification, page 1 J

A natural target for theorem provers [10, 4]

• Concise formal specifications relating outputs
to inputs

• The RTL is relatively tractable.

— While the size of an FPU may be substantial, the
logic tends to decompose by operation.

— The interfaces with other modules are smaller and
simpler.

• Complexity of floating-point designs causes
problems for other verification approaches.

— Testing alone may be inadequate.

— Decision procedures used in formal verification tradi-
tionally have capacity limitations, for example for mul-
tiplication and shifting.

[Floating-point Verification, page 2 J

We have addressed the verification of RTL mod-
els with increasing levels of complexity.

• Started with simple pipeline-based designs

• Conditional pipelines [2] allowed more com-
plicated signal dependencies and the sharing of
hardware among operations of different laten-
cies.

• Current work involves RTL with feedback (es-
pecially state machines, which are used in the
implementation of iterative algorithms).

[Floating-point Verification, page 3 J

Various tools besides ACL2 are involved in this
verification effort.

• "Translator" (written in flex/bison/C++ and
ACL2) takes RTL as input and generates forms
in a Lisp-like target language for specifying state
machine transitions.

— We have also written high-level specs directly in this
target language.

• "Compiler" (written in ACL2) analyzes signal
dependencies and pipeline structures and pro-
duces ACL2 definitions.

[Floating-point Verification, page 4 J

• Tools (written in ACL2) automate repetitive
tasks by generating lemmas automatically from
the RTL:

— Lemmas about bit-vector widths

— Lemmas used in reasoning about conditional
pipelines [2]

— Lemmas connecting different models (combinational
and executable)

• ACL2 library of general reusable lemmas [9]
has been designed to simplify terms built from
RTL operations, in many cases automatically.

— Development continues on the RTL library, with
users inside/outside of AMD [10].

[Protocol-level Verification, page 1 J

Formal verification of non-floating-point RTL
can be considerably more difficult.

• Unclear and incomplete (or nonexistent) specs

• Decomposition of verification task is far more
difficult.

— Sufficient invariants often involve every state vari-
able, and significant and complex environment assump-
tions are required.

• Experimental formal analysis of a bus inter-
face unit (many thousands of lines of RTL)

— instrumental in resolving a subtle liveness issue

— limited practical value

• Higher-level proof attempt on cache correct-
ness

— Partially completed, but appeared to have limited
payoff relative to the efl["ort involved

10

[Protocol-level Verification, page 2 J

We completed proofs when the effort seemed
justified.

• Proof of a write-ordering property with re-
spect to a fairly sophisticated mechanism

— Proof performed at algorithm level. Abstracted nu-
merous uninteresting details. Formal analysis more ef-
fectively focused at subtle cases.
— Informal statement: If processor PI performs write
Wr(addrl) followed by write Wr(addr2), and processor
P2 performs reads at address addr2 and then addrl,
then if the read at addr2 gets the new value, so does
the write at addrl.

• Proof of progress for a routing module

— The proof was performed on a model which general-
ized the RTL (i.e., the RTL was functionally equivalent
to an instance of the model). The model was defined
with recursive functions and data structures, which pro-
vided a much more expressive "language" for defining
invariants, refinement maps, etc.

11

[Attempts at Model Checking J

We have begun looking at model checking and
symbolic simulation, but initial results are lack-
luster.

• Our designs are in a proprietary language,
which is not an input language for existing Mo-
del Checkers.

- Translator output is often difficult for a human to
read.

• Attempts at using symbolic simulation were
ineffective due to incompleteness of search.

- In order to expose bugs, we need to simulate for
hundreds of cycles and simulation becomes inefficient
much sooner than this.

• Attempts at using Bounded Model Checking
have been more effective, but the property def-
inition complexity is considerably higher.

— Must expUcitly define strengthened invariants.

— Multiple modules expose expressiveness and capacity
issues.

12

[Problems J

• Modules are large (many thousands of lines).

• RTL is not written in a standard language.

• It takes effort to develop meaningful specifica-
tions, which are not always readily supplied by
the RTL developers.

Is formal verification cost-effective?

— RTL writers have told us that any value added would
appear to be in verification involving interfaces among
multiple large modules.

— Time to write specs is a real issue, but has some
support among the RTL designers.

— We developed a simple checker (written in ACL2)
for some sorts of typos that have been seen during pre-
silicon RTL.

Capacity, Capacity, Capacity...

13

References

[1] Kaufmann, M, Manolios, P, Moore, J S. Computer-Aided Rea-
soning: An Approach. Kluwer Academic Press, 2000.

[2] Kaufmann, M. and Russinoff, D., "Verification of Pipeline
Circuits," in Proceedings of ACL2 Workshop 2000. Available
at URL http://www.cs.utexas.edu/users/moore/acl2/-
workshop-2000/final/russinoff-kaufmann/paper.pdf.

[3] Moore, J, Lynch, T., and Kaufmann, M., "A Mechani-
cally Checked Proof of the Correctness of the Kernel of the
AMDbxSQ Floating Point Division Algorithm", IEEE Trans-
actions on Computers, 47:9, September, 1998.

[4] O'Leary, J., Zhao, X., Gerth, R., and Seger, C-J.H.,"Formally
Verifying IEEE Compliance of Floating-Point Hardware", Intel
Technology Journal, 1999.

[5] Russinoff, D., "A Mechanically Checked Proof
of IEEE Comphance of the AMD-K5 Floating
Point Square Root Microcode", Formal Methods
in System Design 14:1, January 1999. See URL
http: //www. onr. com/user/russ/david/f sqrt.html.

[6] Russinoff, D., "A Mechanically Checked Proof of IEEE Com-
pliance of the AMD-K7 Floating Point MultipHcation, Divi-
sion, and Square Root Algorithms", Journal of Computa-
tion and Mathematics 1, London Math. Society, December
1998. See URL http://www.onr.com/user/russ/david/-
k7-div-sqrt.html.

14

[7] Russinoff, D. and Flatau, A., "RTL Verification: A
Floating-Point Multiplier", in Kaufmann, M., Manolios, R,
and Moore, J, eds.. Computer-Aided Reasoning: ACL2
Case Studies, Kluwer Academic Press, 2000. See URL
http://www.onr.com/user/russ/david/acl2.html.

[8] Russinoff, D., "A case study in formal verification of register-
transfer logic with ACL2: The floating point adder of the AMD
Athlon-^^ Processor, in Hunt, Warren A. Jr. and Johnson,
Steven D., eds., FMCAD 2000, Proceedings of Third Inter-
national Conference on Formal Methods in Computer-Aided
Design, Springer, November, 2000.

[9] Russinoff, D. and Smith, E., "An ACL2 Library of
Floating-Point Arithmetic", to appear (earlier version
at URL http://www.cs.utexas.edii/users/moore/-
publications/others/fp-README.html).

[10] Sawada, J., "Formal Verification of Divide and Square Root Al-
gorithms Using Series Calculation", to appear in Proceedings of
ACL2 Workshop 2002.

15

Talk Abstract
Verifying a Commercial Microprocessor Design at the RTL Level

Ken McMillan
Cadence Berkeley Labs

February 28, 2002

Considerable progress has been made in the past few years in using formal methods to verify models of
processors at the microarchitecture level. Successful verification of such models has been achieved using, for
example, Burch-Dill style proofs based on efficient decision procedures or general purpose theorem provers,
as well as proofs based on model checking and abstraction. However, these models, roughly at the level
detail presented in computer architecture textbooks, are still far removed in complexity from the "RTL"
level models used in the design of commercial microprocessors.

The complexity of commercial RTL-level designs stems from a number of factors, including low-level opti-
mizations introduced by designers, the somewhat baroque nature of the instruction sets of most commercial
processors, and the requirements of logic synthesis and simulation tools. The task of specification is further
hampered by the fact that processor designs generally do not implement their instruction set architectures
faithfully in all cases. Thus, correctness must be specified relative to certain restrictions on the instruction
stream, which may not be precisely documented, and must be inferred from the design itself.

Using a commercial microprocessor design as an illustration, we will consider some approaches to spec-
ification and verification that make it possible to verify RTL-level processor designs against instruction set
architecture models. We will cover a number of issues that arise in RTL-level verification that may not be
encountered in more abstract models, including:

• Specification strategies that allow a greater degree of localization of the verification problem, to cope
with the large size of the model.

• Tradoffs between verification at the bit level and at the word level (i.e., using uninterpreted functions).

• Tradeoffs between a direct refinement approach and the use of an intermediate model.

• Strategies for dealing with low-level asymmetries, such as variable-length instruction encodings, variable
granularity of data transfer (bytes, words, cache lines), bit level manipulation of addresses (in cache
controllers, for example), and so on.

• Specification approaches for dealing with incoherent caches and other implementation anomalies.

Although theses issues will be addressed in the context of a proof of correctness by compositional model
checking, we will also consider the implications for proofs using the Burch-Dill approach.

Verifying a Commercial
Microprocessor Design at the

RTL level
Ken McMillan

Cadence Berkeley Labs
mcmillan@cadence.com

We will consider some of the problems involved in
verifying the actual RTL code of a commercial processor
design, as opposed to an architectural model.

This is a work in progress...

Outline
Methodology
The PicoJava design
Verification Strategy

Problems

Proof Methodology

property

"circular" assume/guarantee proof
•divide into "units of work"

i i i i i u
1^9 ■•■E''^P°''cl "case splitting

•identify resources used

abstract interpretation
•reduce to finite state

model checking

"Circular" assume/guarantee

Let p -** q stand for
"if p up to time t-1, then q at t"

Equivalent in LTL of

-(P U -,q)

Now we can reason as follows:

q->*p
p->*q

Gp A Gq

That is, if neither p nor q is the first to be
false, then both are always true.

Using a reference model

 ^ A

4

 e.g., programmer's model

' refinement relations
(temporal properties)

"circular" proof: q ->* p

&p A Sq

A and B each perform a "unit of work"

Temporal case splitting

Idea:
parameterize on most
recent writer ivat
time t.

Vi: 6((w=i) => (|))

Abstract interpretation

Problem: variables range over unbounded set U
Solution; reduce U to finite set 0 by a
parameterized abstraction, e.g.,

0 = {{i}. U\i)
where U\i represents all the values in U except i.

Need a sound abstract interpretation, such
that:
if ((i is valid in the abstraction, then, for all parameter

valuations, i} is valid in the original.

Data type abstractions in SMV

Examples:
- Equality —X—

(i) U\i

w 1 0

U\i 0 !*■

represents
"no information"

- Function symbol application

i'"x ■■■''■ m \)\\
ww m ,SL'-

Unbounded array reduced to one fixed element!

Note: truth value under abstraction may be X...

Applying abstraction

Must verify by model checking:

({) -»+ ((w=i) => <|))

i.e, if Pi is the most recent to modify Vj, then v,
is correct.

Review

By a sequence of three steps:
- "circular" assume/guarantee reasoning

(restricts to one "unit of wopl<'')

- case splitting (adding parameters)
(identifies resources used in tliot unit of work)

- abstraction interpretation
(obstpocts owoy everything else)

..we reduce the verification of an unbounded
system of processes to a finite state problem.

PicoJava

stack machine architecture
Implements Java bytecode interpreter in
hardware

Instruction path

We will concentrate on 1$ and Fold units.

Queue

Specification strategy

Since Implementation is very large and
complex, we need a specification strategy that
allows a fine-grain decomposition of the proof.

Topics:
- Reference Model
- Histories
- Togs and Refinement Relations
- Dealing with Exceptions

Reference Model

Programmer's view of Java machine (ISA)
- contains only programmer visible state

Relating ImpI to Ref Model

Specify ImpI w.r.t. reference model history

Ref Model Complete state

History /

Refinement relation

h Implementation .-M

Correctness criterion

Correctness is defined as follows:
- There exists some interleaving of ImpI and Ref,

such that the given relation holds between ImpI and
history.

Must choose a witness interleaving
- Any interleaving that ensures reference model

"stays ahead of" the implementation.

We use this approach because one step of implementation
may correspond to many steps of reference model.

Multiple histories

Instructions are a variable number of bytes
Some parts of ImpI deal with bytes, some with
instructions.
Keep two histories:
- Byte level history (stream of instruction bytes)
- Inst level history (stream of instructions)

We could also record history at coarser granularity if
needed...

Tags and refinement relations

Tags are auxiliary state information
Tags are pointers into a history (byte or inst)

Tags flow with data
Refinement relations
- Arc temporal specifications of data correctness
- Use tags to locate correct value of data In history

Note, we sometimes have to prove equality of tags to
show correct data flow

Tags for instruction path
byte history tog

inst history tag

equality proof
derived tag
incremented tag

Queue

Alignment between histories

• Comparing tags into byte and inst histories
- record byte history position of each inst

Inst history ^

•

Byte history \

•

Dealing with Exceptions

Exceptions (e.g., branch mispredictions)
- pipeline may be executing incorrect instructions
- Incorrect instructions must be flushed

Specification strategy

- Define tog "max"
• latest instruction correctly fetched

- Data with tag after "max" is unspecified

History

data correct
t

max data unspecified

Summary of approach

strategy
- Reference model/ Histories/ Tags

Localization of verification
- Model checking can be localized to very small scale.
- State explosion is not a problem.

Problems

Accidents happen to words

Verification depends strongly on abstraction
of data types.
- Use unlntcrprcted types and functions.

- 32-bit word might be abstracted to:
{o,b,~}

where a and b are parameters of a property.

Problem:
- In RTL descriptions, words are often arbitrarily

broken into bits and reassembled.

Exan^ple accident

8-bit register implemented in cells:
module reg8(clk,inp,out);

input elk, inp[7.0];
output out[7:0];
regl cell0(clk,inp[0],out[0]);

regl cell7(clk,inp[7].out[7]);

endmodule

The state is actual held in bits.
How do we abstract the state?

Example Accident

• Veriiog can't make 2-C
module f oo(bits,...);

input bits[63:0];
byteO = bits[7:0];

arrays!

byte? : bits[63:56];

Instead of an array of bytes, we get 64 bits!

A pragmatic approach

If possible, verify property at bit level
- Words must not index large arrays
- Can use "bit slicing"

Else, use two-level approach
- Make intermediate model at word level
- Verify properties using abstractions
- Verify intermediate model at bit level

This avoids re-modeling the entire design using
uninterpreted types and functions.

Bit-field abstractions

Words are often divided into fields

Typical abstraction
- property has parameters t ($ Tag) and a ($ Addr)

31 14 4 0

But accidents happen...

• Adresses of many different bit lengths occur

^-
Cache line

Half cache line

Word

Byte

Cache location

OTfla.-. IF«ii.u J^
14 4

Since types are not structured, how does a tool know how
to divide and abstract these bit vectors?

Manual approach

Re-model using structured types
- i.e., instead of a bit vector, use:

Struct {
tag ■• $TAS;
addr : $ADDR;
offset: array 3..0 of boolean;

}
Prove model correct at bit level
Prove property using type-based abstractions
- examples: cache contents correctness, aligner

output, etc...

Mapping between representations

• Sometimes need to translate between
representations with uninterpreted functions
- example:

31

(Must manually instantiate injectiveness axiom)

What's needed?

Ability to abstract any bit-field of a word
- conceptually straightforward

Some heuristic method of grouping bits
together and assigning them types?
- less obvious

Essentially, we need to be able to reverse-engineer
a bit-level design into a structured design.

Incoherence

Few processors implement ISA precisely
- makes writing a specification difficult

Example: three incoherent caches in PicoJava

- Instruction (I)
- Data (D)
- Stacl< (S)

How to handle mismatch between ISA and

ImpI?

Solution (?)

Mark every address as valid/invalid for I,D,S

Mem
Example:
- I becomes valid when 1$ line explicitly flushed
- I becomes invalid when location written as data

Assume program never reads invalid addresses
Problem: Pipe delay means address is readable unknown
number of clock cycles after flush instruction (???)

Accidental correctness

Queue
Decode must be
one-hot here Example:

- decode not one-hot until
first queue load (I)

- but, in PSR, Fold unit not
enabled at reset

- one instruction required to
enable Fold unit

- hence one-hot when Fold
unit enabled!

Note, local property (one-hotness) depends on far away logic
(PSR, integer unit, etc.). This is not written anywhere
because no one actually knows why circuit works!

Conclusions (?)

Compositional verification of real processors
at RTL level /impossible.
- Reference model/ Histories/ Tags

Several aspects of typical RTL descriptions
make it much more difficult:
- Bit-level representation of words
- Lack of structured data types
- Accidental correctness

Design for formal verification could largely correct
these problems.

An Introduction to Abstract Interpretation

Nicolas Halbwachs
Verimag/CNRS, Grenoble

Abstract

Abstract interpretation has been under development for more that twenty years
[CC77]. It can be viewed both as a unified theory of approximation in dynamic
systems, and as a generic technique for analysing these systems. It has mainly been
applied to program analysis (e.g., [CC92a, NNH99]).

In this short tutorial, we present the principles of abstract interpretation from
the point of view of its application to verification. In this context, abstract inter-
pretation has mainly been used [CGL94, GL93] to reduce infinite state systems to
finite ones: the state space in quotiented into a finite number of classes, and the
considered system is interpreted over these classes. Applying standard techniques
to this abstract system allows one to compute, for instance, over-approximations of
the reachable states of the system.

This finite quotienting of infinite state spaces uses only a part of the abstract
interpretation technology. The general approximation technique can be applied to
infinite state systems, and combines abstraction with extrapolation, which is a way
of "guessing" the limit of a computation. [CC92b] shows that this general technique
can be strictly more powerful, but its applications to verification (e.g., [HPR97]) are
not widespread.

References

[CC77] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In
4th ACM Symposium on Principles of Programming Languages, POPL'77, Los
Angeles, January 1977.

[CC92a] P. Cousot and R. Cousot. Abstract interpretation and application to logic pro-
grams. Journal of Logic Programming, 13(1-4):103-179, 1992. (Also, Research
Report LIX/RR/92/08, Ecole Polytechnique).

[CC92b] P. Cousot and R. Cousot. Comparing the Galois connection and widen-
ing/narrowing approaches to abstract interpretation. In M. Bruynooghe and
M. Wirsing, editors, PLILP'92, Leuven (Belgium), January 1992. LNCS 631,
Springer Verlag.

[CGL94] E. M. Clarke, 0. Grumberg, and D. E. Long. Model checking and abstraction.
ACM TOPLAS, 16(5), 1994.

[GL93] S. Graf and C. Loiseaux. A tool for symbolic program verification and abstrac-
tion. In Fifth Conference on Computer-Aided Verification, CAV'93, Elounda
(Greece), July 1993. LNCS 697, Springer Verlag.

[HPR97] N. Halbwachs, Y.E. Proy, and P. Roumanoff. Verification of real-time systems
using linear relation analysis. Formal Methods in System Design, 11 (2): 157-185,
August 1997.

[NNH99] F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Analysis.
Springer-Verlag, 1999.

Modular analysis of a circuit description
language by abstract interpretation:

Application to the automatic extraction of
circuit shapes.

Charles Hymans
LIX, Ecole Polytechnique, 91128 Palaiseau, France.

February 1, 2002

Abstract

We design a static analysis that extracts the "shapes" of a circuit
described in structural VHDL. It automatically computes a superset
of all the possible connections between wires of the circuit.

This analysis is able to infer and describe connections between
arrays of wires of arbitrary size in a precise way. Although precise, it
is still efficient. First, we use a compact representation to summarize
the possible connections of a design. Second, the analysis is modular:
it can be run on any component, the result can then later be reused
for analyzing a code that instantiates that particular component.

The result of our analysis helps programmers getting better in-
sights about their code. It allows a quick understanding of the depen-
dences inside a module and provides a way to estimate the impact of
a piece of code.

1 Introduction

Today, circuits are specified using Hardware Description Languages. Mod-
ern HDL, such as VHDL or Verilog, allow different levels of description to
coexist. The classical development scheme in VHDL is to first sketch the

A <= B or C;

Figure 1: Wire connection

entity example is
generic(n : integer);
port(A : bit.vectord to n), B : bit_vector(l to 2*n));

end;

architecture rtl of example is

for I in 1 to n

B(I) <= not A(2*I);

end;

end;

Figure 2: Component

functionality of a system at a very high level of abstraction and then to re-
fine this description until it can be automatically synthesized. A structural
VHDL description specifies how basic gates and components (circuits) are
to be connected in order to produce the final circuit. For instance the very
simple program in figure 1 gives rise to a circuit where the wire A is connected
to both wires B and C through a or-gate. Prom a structural VHDL descrip-
tion, our goal is to automatically infer the structure of the interconnections
between wires. That is, in the case of code 1, we want to report that A is
connected to B and C and that no other connection exists. We forget the fact
that this connection occurs through a or-gate. Thus we extract the "shapes"
of circuits described in structural VHDL.

This task seems very easy in the case of such a simple example. One
could use a graph whose nodes are variables names and edges represent the
possible connections. But, now consider the module described in program 2.
The module takes an integer n and two arrays, A and B, of wires . It connects
element i of B to element 2*z of A. Thanks to parameter n, an infinite family of
circuits is here described. And, there is no a priori bound on the sizes of both
A and B. It is thus more difficult to represent the possible connections induced
by program 2. One possible solution is to restrict ourselves to programs
without any free variables. Then we can expand the body of each component
as many times as it is instantiated and also unroll loops. Every array of

the resulting program is now of finite length. Distinguishing between every
elements of the arrays, we can apply the same technique as before. This
method leads to very precise results. However it has many drawbacks: we
can not analyze pieces of code outside their instantiation context; we must
handle very expensive data-structure; the size of the code has blown up.
Maybe more importantly, the program transformation makes the analysis
results difficult to report to the programmer. As an alternative, we can
decide to represent a whole array by only one node in the shape graph.
Unfortunately, this leads to very imprecise results. For instance, the shapes
computed for example 2, would contain an edge from node A to node B that
expresses the fact that any element of A may depend on any element of B.

These two solutions are clearly both unsatisfactory. In order to come
up with an efficient but still precise analysis, we conceived a compact data-
structure that accurately summarizes the possible connections of any part of
a circuit. As before, it consists in a graph whose nodes are variable names
and edges stand for connections. This graph is enriched with numerical
constraints that further refine the set of circuits it represents. We label an
edge between two arrays by the numerical relation that holds between the
indexes of the elements that are connected. In case of code 2, the analysis
leads to a graph with an edge from B to A that is labeled by the constraint
2 * / = r. This means that the l^'^ element of B may be connected to the r*'*
element of A, as long as the relation 2*1 = r holds. This happens to be a
very accurate description of the shapes of the connections. Our abstract data-
structure is parameterized by the underlying numerical constraint domain.
Different domains may be plugged in to tune the precision/efficiency ratio.

The results of our analysis help programmers understand code they have
not written. It allows them to quickly grasp the dependences between the
variables of a piece of code. This may be particularly helpful when re-
engineering or reusing code written by others. In the case of critical hardware
system, one wants to estimate the impact of a failure of a particular com-
ponent in the whole design. This can also be done with the help of our
analysis.

VHDL program slicing techniques as in [CFR+99] and [INIY96] provide
the same kind of facility. However they make the very crude approximations
we pointed out before. That is, individual elements in arrays are not distin-
guished. Slicing is applied to whole VHDL whereas we restrict ourselves to
the small RTL subset of the language. We made this on purpose so as to
simplify the presentation and be able to put more emphasis on the novelties

program

module

deal

type

statement

assignment

block

for loop

instanciation

expr

:= module*

:= entity ident generic decl* port ded*

architecture statement*

:= ident : type

:= integer | bit | bit.vector

:= assignment \ block \ for loop \ instanciation

:= expr <= expr

:= block decl* statement*

:= for ident in expr to expr statement*

:= ident generic map ident* port map ident*

:= 1 I TRUE I ident \ ident{expr)

I expr + expr \ expr and expr \ expr = expr

Figure 3: Abstract syntax of RTL VHDL

of our approach. We nevertheless believe our shape analysis can be extended
to handle all the constructs of VHDL.

2 Syntax

Figure 3 presents the abstract syntax of the VHDL subset we deal with.
For concision reasons, this syntax is a lightened version of the heavily dec-
orated official syntax of the IEEE standard [ANS88]. A program is a set of
modules. Each module has an interface visible from the outside, the entity,
and an internal definition, the architecture. The interface specifies the argu-
ments passed during a component instantiation. The arguments of a module
are of two kinds: ports connect a component to the rest of the circuit, and
generics allow parameterization of the module. The architecture explicits
the structure of the component by a set of statements. Statements are as-
signment, block, for loop and module instantiation. An assignment connects
wires through gates. A block allows the introduction of local variables. Note
that the for loop also automatically introduces a local variable: the index
ident of the loop. Module instantiation is a way to reuse previously defined

instruction ::= command \ call ident [ident/ident)*

command ::= createJnt ident expr \ delJnt ident

I assert expr \ assign ident expr

I create_sig ident \ del_sig ident

I connect expr expr

I command; command

Figure 4: Control flow graph's instructions

createJnt I 1

as^^'fc-'' assert I<=n' ^K%

i v/
0-f^- ® ©

connect B(I) not(A(2*I))

Figure 5: Control flow graph

components.
Without any loss of generality, we suppose that all variables have distinct

names, so that it becomes unnecessary to rely on the lexical scope to dif-
ferentiate them. Variables are typed: a variable is either an integer (mi), a
wire (bit) or an uni-dimensional array of wires (bit-vector). We call signals
variables of type bit or bit.vector.

3 Operational semantics

We give the semantics of programs in two steps. First, we translate each mod-
ule from the source code into a control flow graph. An edge in the control
flow graph links two program points and is labeled by a simple instruction.
The set of instructions stems from the syntax of flgure 4. For example, the
program of figure 2 is translated into the control flow graph of figure 5. Note
that the language of instructions includes the composition of two commands.
This means that one complex construction of our original language may be
translated into the composition of simpler instructions. Expressing the con-
structions of the language as a composition of simple operators reduces the
cost of designing a static analysis. The soundness proof is smaller, the many
but often somewhat redundant constructions of the source language may be
handled quickly. Also, the analysis can be applied to any other language
(like RTL Verilog) whose semantics can be expressed by composing the basic
operators. The trick, however, is to keep the set of nuclear instructions both

concise and expressive enough. We denote by / —+ /' the fact that there is an
edge from / to /' which is labeled by the instruction i. Also, for every module
g, entry{g) and exit{g) respectively denote the entry and exit program points
in the graph of g.

Second, we define the semantics of programs in an operational fashion
[Plo81]. Programs are run on an abstract machine whose possible execution
steps are described by a transition relation. The states of the machine are
tuples of the form (/, p, C,S). A label / indicates the current point of execu-
tion in the program. An environment p maps variables to values. A value
may either be an integer, a wire or an uni-dimensional array of wires. The
execution of a RTL VHDL program leads to the construction of a circuit.
The circuit C is a collection of tuples (iw, T), where ro is a wire and T is some
term built up from logical gates and wires. Lastly the stack S is needed to
mimic the calling mechanism of modules.

The non-inductive rules in figure 6 explains the possible steps for the
abstract machine. When a module is called, a new environment, which maps
the formals to the values of the actuals, is created. The previous environment
is pushed onto the stack. Returning from a module amounts to restoring the
previous environment by popping the stack. For all other instructions the
environment and the circuit are modified according to the semantics of the
commands.

/ —> k Ac = call g fi/ai A /' = entry{g)
p' = create_env/./Q.(p) A S" = S.{1, p)

{l,p,C,S)-^{l',p',C,S')
call

S'.{k,p') = SAk'-U-l'

{l,p,C,S)-^{l',p',C,S')

I —»• r A c G command
{p',C')elcj{p,C)

{l,p,C,S)-^il',p',C',S)

Figure 6: Operational semantics

return

execute

The semantics of commands is specified by rules like:

(,',C')€ [assert 6exH(p,C) ^ iM = true
\ p — p /\ L/ — U

{p',C') e [connect lexpr rexprl{p,C) ^=^ p' = p AC' = C U {{w,T)}

I w = Uexprlp
where s ! ,

I T = {rexprlp

This means that assert bexpr allows execution to continue if the current
state makes the boolean expression bexpr evaluate to true. Furthermore,
connect target expr creates a new connection in the circuit between the wire
denoted by target and the term denoted by expr. For the other commands
let us just state informally that commands createJnt, delJnt and assign ma-
nipulate integer variables: they respectively create a new integer variable,
destroy it and assign to it a new value. Commands create_sig and deLsig
deal with signals. create_sig creates a new wire or an array of wires distinct
from all previously existing wires. del_sig eliminates a signal variable from
the environment.

We denote by XQ the set of initial states of the program. It contains all
the states (Z, p, C, S), where I is the entry point of the main module, p maps
free variables of the module to any possible value of their type, the circuit C
and the stack S are both empty.

An execution trace of a program is a sequence of states SQ ... Sn such
that So is an initial state and such that any two consecutive states SjSi+i in
the trace are linked by the transition relation. Trace semantics groups all
possible (partial and complete) execution traces of a program, and it can be
expressed as the least fixpoint of the following continuous function:

T{X) = Xo U {So • • • SnSn+l | SQ . . . S„ € X, S„ -^ S„+i}

Trace semantics is our concrete model of program execution. To design
our shape analysis algorithm, we follow the methodology of abstract interpre-
tation. We come up with an abstract domain that allows us to compute the
property of interest (namely the shapes of the circuit built by a RTL VHDL
program). Abstract and concrete semantics are related through a Galois
connection. The fact that Galois connections may be composed allows us to
reduce the complexity of the approach: we do this in several successive steps.
The first step being a modular semantics.

4 Modular semantics

It is an awkward task to design a static analysis that is precise and at the
same time scales up. Algorithms that scale up usually give rough information
whereas precise algorithms tend to be very costly. One way to avoid this
dilemma is to design modular analyses. Such analyses compute results, one
module at a time, from the source of the module and from previous results
only.

The cornerstone of such an approach is a semantics which collects the
segments of execution that occur inside each module separately. Segmented
semantics can be given as the least fixpoint of the following continuous op-
erator:

S{X){g) = {so I lo = entry{g) A so G Xo} (1)

U {so\to...tmeX{f)A Im "-^ kAtm-^ SQ} (2)

U {SQ... SnSn+1 \ SQ . . . Sn € X (g) A In —* Wl A Sn -^ U A

to...tmeX(h)Atm-^Sn+l} (3)

U {So...SnSn+l\so...SneX{g)ASn^Sn+l} (4)

where every /j denote the label of the state with same index i

The traces corresponding to a given module g are built in the following way:

8

• if ^ is the main module, then the initial states are added (1)

• if the traces of a module / leads to a call to module g, then the first
state after this call is added (2)

• if one of the execution traces ends onto a module call to h, that the
execution within h can reach the end of the module and return, then
we extend the trace by the state after returning from the call (3)

• as long as the execution remains within the same module g, then the
trace is simply extended (4)

We show the connection between trace and segmented semantics. In fact,
we have defined a complete join morphism^ achop and we have shown that seg-
mented semantics is a sound and complete approximation of trace semantics
through the abstraction (Xchop- In other words we have the soundness:

a,hop{lil> T) C Ifp S

and the completeness:
Ifp S C aehop(lfp T)

Unfortunately, because of equation (2), the semantics of a module g can
not yet be computed only from its source code and the results for all the
modules it calls. To remedy this, we make a crude approximation and do
not restrict the contexts in which g can be called. We can thus replace (2)
by the simpler:

{so I ^0 = entry{g)}

For the purpose of shape analysis, we wish to collect in each program
point the parts of the circuit that have been created since the beginning of
the execution of the module. Hence we further abstract our semantics thanks
to the following complete join morphism:

a{X){g){k) = {{pn,Cn\Co)\{lo,Po,Co,So)...{ln,Pn,Cn,Sn)eX{g)}

The resulting semantics is obtained as the least fixpoint of the continuous
operator M of figure 7. This operator is the basis on which we develop the
shape analysis algorithm.

^A complete join morphism uniquely determines a Galois connection, see [CC92]

entry (g) = {{p,C)\l = entry (g)}
plug;^/„,(X)(F) = {{p,CuC')\{p,C)eXA{creBte.envf,faAp),C')eY}

MihiM) = entry (^)

U [jm{X{g){l'))\l'--^l}
A = IfpM

Figure 7: Operator M

5 Shape analysis
The operator M manipulates infinite sets of pairs environment/circuit. Ob-
viously, this makes the least fixpoint of M not computable. We design an
abstract domain that represents possible connections in the circuit, i.e. its
shapes. We then derive the abstract counterpart init", plug" and Ic]" for each
of the operations that appear in the definition of M. An abstract operator M"
is defined by simply replacing init, plug and |c] by their abstract correspon-
dent in the equation of M. The local soundness of the abstract operations in-
duces the soundness of Ifp M" with respect to Ifp M. Our algorithm then con-
sists in computing the least fixpoint of MK Thanks to Tarski's fixpoint the-
orem, this can be done by computing M«(±), M^{M^{±)), M«(M«(M»(-L))),
... until stabilization. Lastly, the fact that our abstract domain checks the as-
cending chain condition^ insures the termination of our analysis. Practically,
more efficient fixpoint algorithms can be used, see [HDT87, Bou93].

As mentioned in the introduction, a dependence graph D is our abstract
representation for shapes of circuit. The nodes of D are signal variables^ An
edge between two nodes A and B indicates that there may be a connection
from A to B. In the case where either A or B is an array, then the edge is labeled
by a symbolic representation of the relationship that holds between the in-
dexes of the elements that are connected. Many symbolic representation for
constraints between integer variables have been proposed within the frame-
work of abstract interpretation. Some are [Kar76, MinOl, CH78, Gra97].

^We can also use widening operators
^Recall that a signal is either a wire or an array of wires

10

\ a 1 = J

lefti
lefti = 2 * righti + 1

Figure 8: Pivot role of the environment

In order to be able to infer a dependence graph without too much loss of
information, we also need to keep track of the possible values of the integer
variables in the program. Consider the following assignment statement:

A(2*i+1) <= B(j);

Without knowing anything about the possible values of i and j, we can not
do better but infer that some element of A is connected to some element of
B. This is different in the case where we know that i = j.

So, every abstract operation transforms pairs {E, V) of a numerical do-
main and a dependence graph. We refer the reader to [HymOl] for their
complete definitions. Now, suppose we use the numerical domain of linear
equality [Kar76]. Let us sketch the action of [connect A(2*i+1) B(j)]l' on
an environment where i = j and an empty dependence graph. This will
keep the environment unchanged and add an edge from A to B in the graph.
What constraint labels this edge ? Let the variables lefti and righti denote
the index of A and B. From the expressions, we infer that lefti = 2 * i + 1
and righti = j. The environment tells us that i = j. We put all these
constraint together, project onto lefti and righti. This results into the
constraint lefti = 2 * righti + 1- Figure 8 pictures the pivot role that the
environment has played in this process.

6 Implementation

We implemented the analysis in ML. It is long of approximately 3000 lines
of code. The VHDL code is parsed. From the syntax tree, we build the

11

entity example is
generic (n : integer);
port(A : bit_vector(0 to n); B : bit vector(0

end;
architecture rtl of example isg
beging

for I in@ 0 to n generate
beginG

B(I) <= not A (2*1) ;e
enci;e

end;@_

Circuit : B(ti) —> A(2*ti)

Figure 9: Snapshot

abstract domain and the abstract equations. Once this is done, a fixpoint
computation algorithm is run. It traverses the control flow graph of the
program in reverse post order and fires the abstract operations in turn. In
the end, the result is output as html files. A snapshot from the analyzer is
presented in figure 9.

We were disappointed to find out that the analysis does not radically
improve results of simpler technique like in [CFR+99]. The reason for this, is
that most of the time, in realistic RTL VHDL programs, arrays are connected
in very simple ways: so that the only extra information we are able to gather
is the fact that the indexes of two connected arrays coincide.

7 Conclusion

We presented the design of an analysis that extracts the possible connections
of a circuit described by a RTL VHDL code. We expressed the semantics of
the constructions of the language thanks to the composition of a small num-
ber of operators. This makes our analysis applicable to any language whose
semantics can also be expressed with these operators (e.g RTL Verilog). The
analysis may be computed one module at a time. We believe this modular-
ity allows it to scale up. Unfortunately, the practical result turned out to

12

be somewhat disappointing: considering realistic RTL VHDL programs we
think our technique may be an overshot. However, our theoretical results,
in particular the modular semantics and the domain of dependence graphs
enriched with numerical constraints, are general and we hope they may be
reused in other works.

We believe that, as future work, it would be interesting to incorporate
informations about the time dependences: i.e to collect properties of the form
such output depends on such input with a delay of 3 cycles (or 10 ns).

Acknowledgement

We wish to thank Radhia Cousot, Xavier Rival, Francesco Logozzo and Sunae
Seo for their comments and discussions.

References

[ANS88] ANSI/IEEE Std 1076-1987. IEEE Standard VHDL Language Ref-
erence Manual. New York, USA, 1988.

[Bou93] Frangois Bourdoncle. Efficient chaotic iteration strategies with
widenings. In Proc. of the International Conference on Formal
Methods in Programming and their Applications, Lecture Notes in
Computer Science 735, pages 128-141. Springer-Verlag, 1993.

[CC92] P. Cousot and R. Cousot. Abstract interpretation and application
to logic programs. Journal of Logic Programming, 13(2-3):103-179,
1992.

[CFR+99] Edmund M. Clarke, Masahiro Fujita, Sreeranga R Rajan,
Thomas W. Reps, Subash Shankar, and Tim Teitelbaum. Pro-
gram slicing of hardware description languages. In Conference on
Correct Hardware Design and Verification Methods, pages 298-312,
1999.

[CH78] Patrick Cousot and Nicolas Halbwachs. Automatic discovery of lin-
ear restraints among variables of a program. In Conference Record
of the Fifth Annual ACM Symposium on Principles of Programming
Languages, pages 84-96, Tucson, Arizona, January 1978.

13

[Gra97] Philippe Granger. Static analysis of congruence properties on ratio-
nal numbers (extended abstract). In SAS 97, volume 1302. Lecture
Notes in Computer Science, 1997.

[•HDT87] Susan Horwitz, Alan J. Demers, and Tim Teitelbaum. An efficient
general iterative algorithm for dataflow analysis. Ada Informatica,
24(6):679-694, 1987.

[HymOl] C. Hymans. Modular analysis of a circuit description language by
abstract interpretation and application to the automatic extraction
of circuit shapes. Master's thesis, LIX, Ecole Poly technique, 2001.

[INIY96] M. Iwaihara, M. Nomura, S. Ichinose, and H. Yasuura. Program
slicing on vhdl descriptions and its applications. In Asian Pacific
Conference on Hardware Description Languages (APCHDL), pages
132-139, 1996.

[Kar76] Michael Karr. Affine relationships among variables of a program.
Ada Informatica, 6:133-151, May 1976.

[MinOl] A. Mine. The octagon abstract domain. In AST 2001 in WCRE
2001, IEEE, pages 310-319. IEEE CS Press, October 2001.

[PloBl] G. D. Plotkin. A structural approach to operational semantics.
Technical Report DAIMI FN-19, University of Aarhus, 1981.

14

An Embedded Language Framework
for Hardware Compilation

Koen Claessen^ and Gordon Pace^

^ Chalmers University, Gothenburg, Sweden
^ INRIA Rhone-Alpes, Grenoble, Prance

Abstract. Various languages have been proposed to describe synchronous
hardware at an abstract, yet syntesisable level. We propose a uniform
framework within which such languages can be developed, and combined
together for simulation, synthesis, and verification. We do this by embed-
ding the languages in Lava — a hardware description language (HDL),
itself embedded in the functional programming language Haskell. The
approach allows us to easily experiment with new formal languages and
language features, and also provides easy access to formal verification
tools aiding program verification.

1 Introduction

There are two essentially different ways of describing hardware. One way is struc-
tural description, where the designer indicates what components should be used
and how they should be connected. Designing hardware at the structural level
can be rather tedious and time consuming. Sometimes, one affords to exchange
speed or size of a circuit for the ability to design a circuit by describing its be-
haviour at a higher level of abstraction which can then be automatically compiled
down to structural hardware. This way of describing circuit is usually called a
synthesisable behavioural description^. Behavioural descriptions are also often
used to describe the specification of a circuit.

There exist a number of languages that one can use to structurally describe
hardware. An example is the synchronous language Lustre [8,9], which can be
compiled into hardware structurally [21]. Languages that can be used for synthe-
sisable behavioural description are for example Esterel [2] and Occam [17]. The
popular industrial description languages VHDL and Verilog allow both kinds of
descriptions.

In this paper, we will only deal with synchronous hardware, that is, all latches in
a circuit listen to one omnipresent global clock. Moreover, at every clock cycle,
if each input to a circuit is defined, each point in the circuit stabilises to exactly

•* These are to be distinguished from behavioural descriptions (as used in industrial
HDLs such as Verilog and VHDL) which are used to describe the functionality of a
circuit, but are do not necessarily have a hardware counterpart.

one voltage, low or high. However, we do not require that every feedback loop
in the circuit contains a latch.

There are two main classes of synthesisable languages: ones where the descrip-
tion determines the timing behaviour (cycle by cycle) of the resultant circuit,
and ones with no explicit timing control, and where the compilation only guar-
antees that the output at the end of the algorithm (or at designated points in the
algorithm) matches that of the circuit. Languages with strict timing are neces-
sary to describe circuits such as protocol implementations, and reactive systems,
where the circuit continuously runs, sampling inputs, and behaving accordingly.
In practice, some compilation schemata fall somewhere in between these two
classes. In particular, commercial synthesis tools for Verilog and VHDL usually
provide the user with the option of choosing how strictly the timing behaviour
specified is adhered to. In the rest of the paper, we will be talking exclusively
of strict timing compilation, but the approach is equally applicable to languages
with loose timing.

Embedded Description Languages
Using a technique from the programming language community, called embedded
languages [11], we present a framework to merge structural and behavioural
hardware descriptions. An embedded description language is realised by means of
a library in an already existing programming language, called the host language.
This library provides the syntax and semantics of the embedded language by
exporting function names and implementations.

The basic embedded language we use is Lava [5]. Lava is a structural hardware
description language embedded in the functional programming language Haskell
[18]. From hardware descriptions in Lava, EDIF netlist descriptions can be au-
tomatically generated, for example to implement the described circuit on a Field
Programmable Gate Array (FPGA). This has previously led to highly efficient
implementations of complicated circuits [6,25].

Embedding a language is a powerful concept because descriptions in the embed-
ded language are first-class objects in the host language. In the case of Lava, this
means that hardware descriptions can be generated, analysed and transformed
using a full-blown programming language.

The idea is now to build a layer on top of Lava, which embeds a synthesisable
behavioural description language. In order to do this, we have to specify the
syntax of the behavioural language, and the way it is compiled into a structural
hardware description. It is possible to describe all this in the Lava framework: the
syntax is described as a Haskell datatype, and the compilation process described
as a Lava circuit description.

But why stop there? It is possible to embed several different behavioural descrip-
tion languages, each with their own features, advantages and disadvantages. In
this way, we can describe a hardware system, using different languages for dif-
ferent parts, all within a single framework.

Examples of uses of embedding in this way are: behavioural in structural, where
we use a behavioural language to describe some parts, and plug these parts to-
gether using a structural language; multiple behavioural in structural, the same,
but having several different behavioural languages; structural in behavioural, so
that we can describe a sub-procedure of the behavioural algorithm structurally;
and even behavioural in behavioural, where we can describe sub-procedures for
one behavioural language by using another behavioural language. All these ex-
amples are useful in describing circuits as well as their specifications.

Some of these examples are non-trivial to achieve, and we do not claim to have
a generic solution to them. Our contribution proposes a common framework, in
which one can quickly experiment with different approaches and new behavioural
languages. The framework we propose. Lava, is powerful enough to use for de-
scribing new languages, giving semantics to them, implementing them, and com-
bining them. In the context of developing behavioural description languages, it is
very convenient to have circuit descriptions, analyses, transformations, and im-
plementation and verification methods backed up by a full-blown programming
language.

In section 2 we briefly introduce Lava and show how a simple high level language,
that of regular expressions, can be embedded in Lava and how instances of
this language can then be manipulated syntactically and compiled into circuits.
In section 3 we illustrate how the embedded language approach extends easily
to more complex languages by presenting a small, imperative style language.
Flash. Section 4 then discusses more advanced issues: various ways of combining
different high level languages, verification of compiled programs and exploring
potentially dangerous combinational loops.

2 Embedding Hardware Description Languages

Circuit Descriptions in Lava
Circuit descriptions in Lava correspond to function definitions in Haskell. The
Lava library provides primitive hardware components such as gates, multiplexers
and delay components. We give a short introduction to Lava by example.

Here is an example of a description of a register. It contains a multiplexer, mux,
and a delay component, delay. The delay component holds the state of the
register and is initialised to low.

setRegister (set, new) = now
where

old = delay low now
now = mux (set, (old, new))

Note that setRegister is declared as a circuit with two inputs and one output.
Note also that definitions of outputs (now) and possible local wires (old) are
given in the where-part of the declaration.

After we have made a circuit description, we can simulate the circuit in Lava
as a normal Haskell function. We can also generate VHDL or EDIF describing
the circuit. It is possible to apply circuit transformations such as retiming, and
to perform circuit analyses such as performance and timing analysis. Lava is
connected to a number of formal verification tools, so we can also automatically
prove properties about the circuits.

Generic and Parametrized Circuit Definitions
We can use the one bit register to create an n-bit register array, by putting n
registers together. In Lava, inputs which can be arbitrarily wide are represented
by means of lists. A generic circuit, working for any number of inputs, can then
be defined by recursion over the structure of this list.

setRegisterArray (set, []) = D
setRegisterArray (set, new mews) = val:vals

where
val = setRegister (set, new)
vals = setRegisterArray (set, news)

Note how we use pattern matching to distinguish the cases when the list is empty
([]) and non-empty (x:xs, where x is the first element in the hst, and xs the
rest).

Circuit descriptions can also be parametrized. For example, to create a circuit
with n delay components in series, we introduce n as a parameter to the descrip-
tion.

delayN 0 inp = inp
delayN n inp = out

where
inp' = delay low inp
out = delayN (n-1) inp'

Again, we use pattern matching and recursion to define the circuit. Note that
the parameter n is static, meaning that it has to be known when we want to
synthesise the circuit.

A parameter to a circuit does not have to be a number. For example, we can
express circuit descriptions which take other circuits as parameters. We call these
parametrized circuits connection patterns. Other examples of parameters include
truth tables, decision trees and state machine descriptions. In this paper, we will
talk about circuit descriptions which take behavioural hardware descriptions, or
programs, as parameters.

Behavioural Descriptions as Objects
In order to parametrize the circuit definitions with behavioural descriptions,
we have to embed a behavioural description language in Lava. We do this by
declaring a Haskell datatype representing the syntax of the behavioural language.
To illustrate the concepts with a small language, we will use regular expressions.
The syntax of regular expressions is expressed as a Haskell datatype:

data RegExp = EmptyString

I Input Sig

I Star RegExp
I RegExp :+: RegExp

I RegExp :>: RegExp

The data objects belonging to this type are interpreted as regular expressions
with, for example, a{b + c)* being expressed as:

Input a :>: Star (Input a :+: Input c)

Note that the variables a, b and c are of type Sig — they are signals provided
by the programmer of the regular expression. They can either be outputs from
another existing circuit, or be taken as extra parameters to the definition of
a particular regular expression. We interpret the signal a being high as the
character 'a' being present in the input.

Since regular expressions are now simply data objects, we can generate these
expressions using Haskell programs. Thus, for example, we can define a power
function for regular expressions:

power 0 e = EmptyString
power n e = e :>: power (n-1) e

Similarly, regular expressions can be manipulated and modified. For example, a
simple rewriting simplification can be defined as follows:

simplify (EmptyString :>: e) = simplify e

simplify (EmptyString : + : e)
1 containsEmpty e = simplify e

1 otherwise = EmptyString :+: simplify e

simplify (Star (Star e)) = simplify (Star e)

Another useful algorithm which can be expressed is the one presented in [20],
which reduces (in linear time) a regular expression e to another one / such that
the empty string does not occur in / and e* is the same language as /*. Thus,
from now on, we assume that the body of a Star cannot produce the empty
string.

Compiling Regular Expressions into Circuits
The circuits we generate for regular expressions have one input start and two
outputs match, and prefix. When start is set to high, the circuit will start
sampling the signals. The output match is then set to high when the resulting
sequence of signals is included in the language represented by the expression.
The output prefix corresponds to a wire which indicates whether the compiled
circuit is still active, and the parsing of the regular expression has not yet failed
with respect to the received inputs. Note that the circuit will get extra inputs,
which correspond to the parsed symbols. They are part of the regular expression,
by means of the Input construct.

start

prefix

match

The type of the resulting circuit is thus:

type Circuit_RegExp = Sig -> (Sig, Sig)

since the resulting circuit has one input and two outputs.
We express the compilation process as a circuit definition
parametrized by a regular expression:

regexp :: RegExp -> Circuit_RegExp

start The Empty String
The compilation of the empty string is straightforward,

pref ijf given the usage of the prefix and match wires:

regexp EmptyString start = (prefix, match)
where

match prefix = low
match = start

low

start

a
match

start

' match

Signal input
The regular expression Input a is matched if, and only

prefix if the signal a is high when the circuit is started.

regexp (Input a) start = (prefix, match)
where

prefix = and2 (start, a)
match = delay low prefix

Sequential composition
The regular expression e : >: f must start accepting ex-
pression e, and upon matching it, start trying to match
expression f.

regexp (rexpl :>: rexp2) start = (prefix, match)
where

(prefixl, matchl) = regexp rexpl start
(prefix2, match) = regexp rexp2 matchl
prefix = or2 (prefixl, prefix2)

prefix

prefix

match

Loops
The circuit accepting regular expression Star e is very
similar to that accepting e, but it is restarted every time
the inputs match e.

regexp (Star rexp) start = (prefix, match)
where

(prefix, match') = regexp rexp match
match = or2 (start, match')

start I Non-deterministic choice
The inputs match regular expression e : + : f exactly
when they match expression e or f.

regexp (rexpl :+: rexp2) start = (prefix, match)
where

(prefixl, matchl) = regexp rexpl start
(prefix2, match2) = regexp rexp2 start
prefix = or2 (prefixl, prefix2)

*'"^'^<=^ match = or2 (matchl, match2)

A circuit resulting from such a compilation scheme is not necessarily efficient
enough. Often, there are optimisations we can make, such as constant folding
(when the input to a gate is always low or always high), sharing introduction
(when we have identical gates with identical inputs), tree introduction (changing
a linear chain of associative gates into a balanced tree), and constant introduction
(when a circuit point provably always has the same value). Sometimes, more
rigorous optimisation methods are necessary; in this case we can use external
circuit optimisation tools such as SIS [7].

3 Compiling Flash

In this section, we will show a slightly bigger example of a language, we will
call Flash. It is quite a basic language, but it illustrates many of the issues
one encounters when dealing with hardware compilation. As it is meant just
an example, we deal quite informally with the semantics of Flash. More formal
treatment of the semantics of similar languages can be found in [1,17].

Flash Syntax
As before, we first declare a Haskell datatype that embeds the syntax of Flash.

data Flash = Skip
I Delay
I Shout
I IfThenElse Sig (Flash, Flash)
I While Sig Flash
I Flash :» Flash
I Flash :I 1 Flash

Flash is a simple imperative programming language containing the usual state-
ments like skip, sequential composition (:»), if-then-else, and while. For sim-
plicity, the language has no expressions. Instead, we can use Lava gates directly
to create a signal representing the condition in both the if-then-else and the
while loop.

To create some interesting output, we have added a Shout statement. This state-
ment is in the spirit of the Esterel emit statement [2]. It makes a special output

shout

finish j finish

Delay Sequential composition

start start!

cond

shout

fihish finish

Conditional Parallel composition While loops

Fig. 1. Compiling Flash

of the circuit, called shout, high whenever Shout is executed. Further, we also
have parallel composition (: I I), which has a fork-join semantics. Lastly, the de-
lay statement is the only statement that takes time. When executed, it blocks
the process until the next clock cycle. Note that Shout takes no time to execute.

For example, a Flash program to output a clock-Hke output alternating between
high and low could be written as:

alternate = While (high) (Shout :» Delay :» Delay)

Compiling Flash
start

shout

finish

The circuits that we compile Flash programs into have
one input, start, which is set to high to start the pro-
gram. They will have two outputs: shout, which be-
comes high when the program shouts, and finish, which
becomes high when the program is done.

In figure 1, we see the compilation schemata for the various language constructs
of Flash. We show the Lava code for some of the constructs.

The case for the while loop looks as follows:

flash (While cond prog) start = (shout, finish)
where

(shout, finish') = flash prog start'

restart = or2 (start, finish')
start' = and2 (restart, cond)
finish = and2 (restart, inv cond)

We might (re)start the body of the while loop, if the whole loop is started or if
the body has just finished. In that case, depending on the condition, we restart
the body or we finish. Note that we have created a loop since finish' depends
on start' depends on restart depends on finish'. In fact, this loop might be
a combinational loop — we say more about this in section 4.

Here is how we translate parallel composition:

flash (progl :|| prog2) start = (shout, finish)
where

(shoutl, finishl) = flash progl start
(shout2, finish2) = flash prog2 start
shout = or2 (shoutl, shout2)
finish = synchroniser (finishl, finish2)

We start both processes as soon as the parallel composition is started. We shout
when one of the processes shouts. But when do we finish? We use a little circuit,
called synchroniser, which keeps track of both processes, and generates a high
on the finish signal exactly when both processes have finished.

synchroniser (finishl, finish2) = finish
where

both = and2 (finishl, finish2)
one = xor2 (finishl, finish2)
wait = delay low (xor2 (one, wait))
finish = or2 (both, emd2 (wait, one))

The wire both is high when both processes are finishing at the same time. The
wire one is high when exactly one process is finishing. The wire wait is high
when one process has finished but not the other.

4 Advantages of Embedding

In this section, we discuss some of the advantages of embedding behavioral lan-
guages in a general hardware description framework like Lava.

Combining Languages
The choice of the right language to solve a problem is crucial both to simplify the
algorithm, and to generate more efficient circuits. For example, regular expres-
sions can be very useful to generate circuits which validate their input, but, since
they have no outputting mechanism, it becomes very difficult (or impossible) to
perform calculations and output their results.

Consider the problem of designing a circuit that accepts input sequences that
behave Hke a clock with half-period n. This circuit might be useful for monitoring
real input, or when expressing properties for later formal verification. It is easy
to write a generic regular expression with the specified behaviour:

acceptClock n c = Star (power a (Input c)
:>: power n (Input (inv c))

)

Now consider using a regular expression to design a circuit that monitors two
inputs, accepting them only if they behave like clocks with half-periods n and
m. The size of the smallest regular expression capable of doing this has a size of
the order of magnitude of the least common denominator of n and m, which is
too big in practice.

There are two solutions. One is to design a new language, in which it is easy
to describe circuits as the one mentioned above. In fact, it would suffice to add
conjunction as a regular expression operator, which would require some extra
compile-time effort. The other is to combine the solutions to the two subproblems
(recognising each clock) at the structural level using Lava:

acceptXwoClocks n m (cl,c2) = ok
where

(okl,_) = regexp (acceptClock n cl) start
(ok2,_) = regexp (acceptClock m c2) start
start = delay high low
ok = and2 (okl, ok2)

Obviously, the used subprograms need not be in the same language. For example,
if we want to run a Flash program prg only to abort it as soon as the input does
not match a regular expression rexp, we can use the following parameterised
circuit:

abort rexp prg start = (shout', finish)
where

(shout, finish) = flash prg start
(prefix, _) = regexp rexp start
shout' = and2 (shout, prefix)

Nesting Languages
A problem with the approach mentioned above is that we deal with the input and
output of the produced circuits at a rather low-level. This is quite error-prone,
and it becomes difficult to change the shape of the produced circuits.

A cleaner approach is not to express the combination of programs at the struc-
tural level, but at the behavioural one. Thus, for example, one could allow adding
Flash subprograms to regular expressions by augmenting the syntax of regular
expressions by:

data RegExp = ... I ImportFlash Flash

Consider the problem of generating a circuit which recognises the input of a, b
and c in any order. If this is required in a sub-expression of a regular expression,
the result of expanding the expression can lead to a blow up in circuit size.
However, a Flash program for this is rather simple to write:

wait s = While (inv s) Delay
perm3 (a.b.c) = (wait a :|| wait b :|| wait c) :» Delay

If this is required within a regular expression, one can easily use it as for example:

Star (ImportFlash (perni3 (a,b,c)) : + : ImportFlash (perm3 (d.e.f)))

Fiddling with the interfaces to make them match is thus done only once when
the compilation of a regular expression of the form ImportFlash p is defined.
However, this approach still has the undesirable effect that for every new lan-
guage one uses, the compilers for all other languages need to be modified to be
able to import programs from the new languages into the old ones.

A more extendable approach would be to add one Import construct for each
language:

data RegExp = ... 1 ImportRegExp Circuit.RegExp
data Flash = ... I ImportFlash Circuit.Flash

Now, in order to import Flash programs in regular expressions, all we have
to provide is a parameterised circuit f lash.regexp, which converts from one
format to the other.

flash_regexp flashc start = (prefix, match)
where

(shout, finish) = flashc start
prefix = shout
match = finish

Needless to say, there are other ways in which a Flash circuit can be transformed
into one which can be used by regular expressions. For example, one can gener-
ate (or calculate) an active wire from Flash circuits which corresponds to the
regular expression prefix wire. In defining these 'conversion' circuits, we have
to be careful here not to invalidate the invariants that the languages involved
assume and obey. The technique mentioned in the next section can be used to
help with this. 'Calling' another language now simply becomes a matter of using
the Import construct and the right conversion circuits.

Error Wires
Often, something can go wrong during the execution of a program. What exactly
can go wrong depends on the semantics of the language. A standard example in
a language with arithmetic expressions is division by zero. It is not clear what

the corresponding compiled circuit would do in that case, since we do not want
the circuit simply to 'abort'.

In a language with parallel composition, things can go wrong due to parts of
the circuit requiring single access: two processes trying to send a message on the
same channel at the same time, two processes updating a shared variable at the
same time, etc. If the semantics of the language disallows these situations, then
we should make sure that the programs we compile to hardware are well-behaved.

The solution we propose is to have an extra output to the circuit which goes high
as soon as something goes wrong with the program execution — an error wire.
This wire and the logic generating it will not appear in the final implementation
of the circuit, but will be used to verify (by means of model checking methods)
that the program in question is error-free.

Consider a change to the semantics of Flash, requiring that only one process
can shout at the same time. We would Uke to be warned at compile time if a
program violates that property. Thus, we add an error wire to the output of Flash
circuits, and adapt the compilation scheme accordingly. Here is the interesting
case, parallel composition:

flash (progl :ll prog2) start = (shout, error, finish)
where

(shoutl, errorl, finishl) = flash progl start
(shout2, error2, finish2) = flash prog2 start
shout = or2 (shoutl, shout2)
both = and2 (shoutl, shout2)
error = orl [errorl, both, error2]
finish = synchroniser (finishl, finish2)

There is an error in parallel composition of two programs if there was an error
in (at least) one of the processes, or if both processes shout at the same time.
We can now declare a property, a circuit which outputs are always high if and
only if a certain property holds.

prop.FlashProgramDk prog start = inv error
where

(_, error, _) = flash prog start

The output ok is high if and only if there is no error in the program prog. We
can check this property using the Lava command verify.

Lava> verify (prop_FlashProgramOk (alternate :ll (Delay :» alternate))
Verify: ... Valid.

Lava> verify (prop_FlashProgramOk (Shout :» Delay :ll Shout))
Verify: ... Falsifiable.
<high>

The error wire technique can also be used to find bugs in the compilation scheme
itself. Many languages have certain invariants that hold for every program. By
raising the signal on the error wire when the invariant is violated, and verifying
the absence of this error for random programs (by using a technique similar to
the one developed in [4]), we can find bugs or increase our confidence in the
compilation scheme.

Combinational Loops
Looking at the compilation scheme for the while construct, we can see that it is
possible to introduce combinational loops: cycles in the circuit without a delay
component.

The usual solution in this case is to require that body of the while loop takes
time — the execution path goes through at least one Delay statement. But
even with this restriction, the resulting circuit might still contain combinational
loops. However, these combinational loops are not bad, in the sense that the
actual circuit never produces undefined outputs. In this case, the combinational
loops are called constructive [24].

Even when all combinational loops in a given circuit are constructive, most of
the external formal verification tools that Lava is connected to, are not able to
deal with these loops. Fortunately, the method of temporal induction [23] can
naturally verify properties of cyclic circuit definitions. However, the method is
only sound if all loops in the circuit are constructive loops.

Thus, before we implement or formally verify actual circuits containing possible
bad loops, we have to prove that all loops all constructive. Lava provides a circuit
analysis, called constructive, which does exactly that [3]. Here is how we can
use it:

Lava> verify (constructive (flash (While high Delay)))
Verify: ... Valid.

Lava> verify (constructive (flash (While high Skip)))
Verify: ... Falsifiable.
<high>

What about parallel composition? When is it acceptable for a body of a while
loop to contain a parallel composition? Take, for example, the following Flash
program:

possibleProblem inp = While high
(IfThenElse inp (Skip , Delay)

:1 I Delay
)

In principle, we should be able to execute this, since for all programs p, the
program p : I I Delay takes time to execute. Let us analyse the resulting circuit:

possibleProblemCirc inp = flash (possibleProblem inp)

Lava> verify (constructive possibleProblemCirc)
Verify: ... Falsifiable.
<low, high>
<high, low>

This shows that the simple compilation scheme we have used to illustrate our
examples is not sufficiently robust to handle this example. Obviously, one can
require that both sides of a parallel composition should take time (when appear-
ing immediately inside the body of a while loop). However, this is a stringent
and rather unsatisfactory restriction. A better solution would be to use a more
complex compilation of loops, as used, for example, in [1].

5 Conclusions

Related Work
Hardware compilation of high-level languages has been around for quite a while.
The approach has been considered potentially practical mainly since the intro-
duction of programmable circuits. The compilation for various languages have
since appeared in the literature, see e.g. [15,17,16,1]. An introductory overview
of the methodology appears in [26].

It is widely recognised that different styles of synchronous languages lend them-
selves more easily to difTerent applications. In [13,14], Maraninchi and Remond
present Mode-Automata — a combination of state diagram based descriptions
(based on Argos [12]) with the dataflow language Lustre [8]. The semantics of the
resulting language are defined by a translation into plain Lustre. The approach
is thus very similar to the one we use, except that they use external programs to
read mode-automata and translate them into Lustre. The embedded language
approach we use, allows us to translate and reason about the new language at the
same level as our base HDL Lava. This allows a much more versatile approach
to language combination.

Poigne and Holenderski [19] present a theoretical framework for combining syn-
chronous languages by using synchronous automata as the common semantic
level. These ideas have been implemented in the SYNCHRONY WORKBENCH

where programs written in one of a number of languages (Esterel, Lustre, Argos,
and Synchronous Eifel) can be combined together. The main difference between
their work and that presented in this paper, is that we embed the languages we
use, and our intermediate language. Lava, is itself an embedded language. This
gives us certain advantages: it is easier to add new languages to the framework,
and language combination can be easily adapted depending on the requirements.

Discussion
We have presented a uniform framework in which it is easy to implement and

hence experiment with synthesisable behavioural languages. By embedding these
languages in Lava, we are able to define their compilation in a natural and easy
way and, at the same time, benefit from the verification tools connected to Lava
to improve compilation and verify programs. We also benefit from, the fact that
we can directly generate EDIF netlists or VHDL from the circuits generated by
our embedded compilers.

Using this approach, we have shown that we can formally reason about programs
at a number of levels. First, taking advantage of the fact that our programs
are just data objects in Haskell, we can apply syntactic reasoning by defining
functions which modify the program. Second, using the verification tools Hnked
to Lava, we can define observers (in one of the languages) to verify properties of
hardware described using either structural Lava, or some other language. Third,
the compilation process itself can make use of the verification tools to check
dynamic properties which may be needed to guarantee correct compilation.

Within our framework, we have implemented various languages or subsets of
them, such as Esterel, Handel and Occam, fragments of process calculi such as
CSP and CBS, and some restricted temporal logics. We have also embedded
state machine descriptions and specification languages in the same framework.
This included different control and data features including updatable variables,
buffered and unbuffered channels, exceptions and broadcast communication. De-
scribing the compilation of a language is rather straightforward, and in fact, we
have successfully used this framework in the teaching of a graduate course on
hardware description languages. The definition of the compilation function for
a language is usually not much different from a denotational semantics of the
language in terms of a dataflow network.

One of the important issues that we have not discussed in this paper is the
question of the correctness of the compilation procedure. A number of approaches
have been proposed [10,22,1] which are applicable to our compilation scheme.
We are currently exploring how such proofs can also be presented uniformly
within our framework. Preliminary work is encouraging and it is not difficult to
prove that, for instance, the compilation of regular expressions presented in this
paper satisfies regular expression equational axioms.

References

1. Gerard Berry. The constructive semantics of Pure Esterel. Unfinished draft, avail-
able from http://www.esterel.org, 1999.

2. Gerard Berry. The Esterel primer. Available from http: //www. esterel. org, 2000.
3. K. Claessen. Safety property verification of cyclic circuits. In preparation, 2002.
4. K. Claessen and J. Hughes. QuickCheck: A light-weight tool for random testing of

Haskell programs. In Internatioanl Conference on Functional Programming, 2000.
5. K. Claessen and M. Sheeran. A tutorial on Lava: A hardware description and ver-

ification system. Available from http://www.cs.Chalmers.se/"koen/Lava, 2000.
6. Koen Claessen, Mary Sheeran, and Satnam Singh. The design and verification of

a sorter core. In CHARME. Springer, 2001.

7. E. M. Sentovich and K. J. Singh et aJ. SIS: A system for sequential circuit synthesis.
Technical Report Berkeley, UCB/ERL M92/41, 1992.

8. N. Halbwachs. A tutorial of Lustre. Available from http: //www-verimag. imag. f r/
SYNCHRONE, 1993.

9. N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous dataflow
programming language Lustre. Proceedings of the IEEE, 79(9):1305-1320, 1991.

10. Jifeng He, Ian Page, and Jonathan Bowen. Towards a provably correct hardware
implementation of Occam. In G.J. Milne and L. Pierre, editors, Correct Hardware
Design and Verification Methods, number 683 in LNCS. Springer, 1993.

11. Paul Hudak. Building domain-specific embedded languages. ACM Computing
Surveys, 28(4):196, 1996.

12. F. Maraninchi. Operational and compositional semantics of synchronous automa-
ton compositions. In CONCUR, number 630 in LNCS. Springer, 1992.

13. F. Maraninchi and Y. Remond. Compositionality criteria for defining mixed-styles
synchronous languages. In International Symposium: Compositionality - The Sig-
nificant Difference, number 1536 in LNCS. Springer, 1997.

14. Florence Maraninchi and Yann Remond. Mode-automata: About modes and states
for reactive systems. In European Symposium On Programming. Springer, 1998.

15. David May. Compiling Occam into silicon. In C. A. R. Hoare, editor, Develop-
ments in Concurrency and Communication, University of Texas at Austin Year of
Programming Series, chapter 3, pages 87-106. Addison-Wesley, 1990.

16. Ian Page. Constructing hardware-software systems from a single description. Jour-
nal of VLSI Signal Processing, 12(1):87-107, 1996.

17. Ian Page and Wayne Luk. In Wayne Luk and Will Moore, editors, FPGAs.
18. Simon Peyton Jones and John Hughes et al. Report on the programming

language Haskell 98, a non-strict, purely functional language. Available from
http://haskell.org, 1999.

19. A. Poign6 and L. Holenderski. On the combination of synchronous languages. In
International Symposium: Compositionality - The Significant Difference, number
1536 in LNCS, pages 490-514. Springer, 1997.

20. Pascal Raymond. Recognizing regular expressions by means of dataflow networks.
In 23rd International Colloquium on Automata, Languages, and Programming,
(ICALP'96), number 1099 in LNCS. Springer, 1996.

21. F. Rocheteau and N. Halbwachs. Pollux, a Lustre-based hardware design envi-
ronment. In P. Quinton and Y. Robert, editors. Conference on Algorithms and
Parallel VLSI Architectures II, Chateau de Bonas, 1991.

22. M. Schenke and M. Dossis. Provably correct hardware compilation using tim-
ing diagrams. Available from http://semantik.Informatik.Uni-01denburg.DE/
persons/michael.schenke/, 1997.

23. Mary Sheeran, Satnam Singh, and Gunnar Stalmarck. Checking safety properties
using induction and a SAT-solver. In FMCAD, LNCS 1954. Springer, 2000.

24. T. Shiple, G. Berry, and H. Touati. Constructive analysis of cyclic circuits. In
European Design and Test Conference, 1996.

25. Satnam Singh and Phil James-Roxby. Lava and Jfiits: Prom HDL to bitstream in
seconds. In K.L. Pocek and J.M. Arnold, editors, IEEE Symposium on FPGAs for
Custom Computing Machines. IEEE Computer Society Press, 2001.

26. Niklaus Wirth. Hardware compilation: Translating programs into circuits. Com-
puter, 31(6):25-31, 1998.

Modelling with Streams in Daisy
and

The SchemEngine Project

Steven D Johnson
Indiana University Computer Science Department

System Design Methods Laboratory

sjohnsonScs.Indiana.edu
www.cs.Indiana.edu/"sj ohnson

Indiana University Computer Science Department System Design Methods Laboratory Steven D Johnson DCC 2002 1

Reviewers' comments

" / would like to see a retrospective on Daisy, summarizing the lessons learned
in designing the language and especially interfacing to ordinary hardware
design flows, all illustrated by a real-ish example like SchemEngine, and
topped off by some ideas for new application areas (e.g. embedded software).
I think the combination of 14/15 would serve this purpose well, if the author
is willing to take things in this direction."

"Not clear what ideas the use of streams in Daisy has compared to other
languages (like Lava) modelling data as streams. What's the role of laziness
and lazy cons apart from streams?"

"... / would like the author to concentrate on paper 15. (Why have these
been merged? They address separate unrelated issues, if I have understood
this correctly."

Indiana University Computer Science Department System Design Methods Laboratory Steven D Johnson DCC 2002 2

Outline

I. Background and context

II. Modeling with streams in Daisy

A. Lazy CONS demand-oriented computation, stream I/O, concurrency.

B. Stream systems.

C. Some modeling techniques.

D. Distributed extensions.

III. The SchemEngine Project

A. Design derivation

B. Previous studies, Schemachine

C. VLI5P [Guttman, Ramsdell, Wand, L&5C 95]

D. SchemEngine objectives in integrated formal analysis

E. Toward an integrated codesign enviornment

Indiana University Computer Science Department System Design Methods Lalxiratory Steven D Johnson DCC 2002 3

Indiana University Computer Science Department System Design Methods Laboratory Steven D Johnson DCC 2002 4

Background (languages)

75-80 Functional programming languages
Fridman & Wise, "CONS should not evaluate its arguments"
Applicative programming for systems
Extensions for indeterminacy, set: [a f3 • • •]
Suspending construction model [continuations, engines in Scheme]

Semantics ?!
80-85 Daisy/DSI in Unix

Stream-based I/O From concurrency to parallelism
O'Donneli, programming environments, hardware models

85-90 Parallel DSI [Jeschke95]
Language-driven architecture =4> design derivation

90-95 Bounded speculation
Windows on the data space
Daisy/DSI for small-scale MIMD?

95-00 Distributed demand propagation
HW models as case studies

Indiana University Compuler Science Department System Design Mettiods Laboratory Steven D Johnson DCC 2002 5

Background (methods)

75-80 Functional programming methods
Prosser &i Winkel, structured digital design, ASMs

80-85 Compiler derivation [Wand]
Combinator factorization =4> "machine"
Stream systems and synchronous hardware
Formalized synthesis

85-90 Digital design derivation
Functional/algebraic formalism
GC-PLD, GC-VLSI, SECD

90-95 DDD =4> • • • [Bose, Tuna, Rath, W.Hunt]
Heterogeneous reasoning
FM8502, FM9001-DDD, Schemachine
DDD vis-a-vis PVS, coinductive types [Minor]

95-00 Tools
Behavior tables
etc.

Indiana University Computer Science Department System Design Methods Laboratory Steven D Johnson DCC 2002 6

II. Modeling with streams in Daisy

Animation is a key aspect of functional formalism.

• Suspending CONS, demand oriented computation.

• List (stream) representation of I/O

• Concurrency construct, set

• Windowing support

Indiana University Computer Science Department System Design Metliods laboratory Steven D Johnson DCC 2002 7

Suspending CONS

Delays! No.
Futures! No.
Engines! Almost.
Demand driven computation? No.
Demand oriented computation • •
bounded speculation

DSi:
o Heap based

symbolic multiprocessing
o Transparent

process management

/^A
f[A]*) :757*/

A::

Indiana University Computer Science Department System Design Methods Laboratory Steven D Johnson DCC 2002 8

Processes as streams

0

, 1 ;...J\ 1 N
Zs; input N; i— inc —i^ —-...43210

0 —- 1 output N;
N.-=N+1

1

—~. ..43210 1 1 >

F:n = [n ! F:inc:n]

 1 1 -"I

N = [0 ! (map:inc):N]

/ — — / — / — -^ C F:inc:n y

/
/

/
/

/
0 1 2

Indiana University Computer Science Department System Design Metlnods Laboratory Steven D Johnson DCC 2002 9

Stream (i.e. lazy-list) based I/O

I/O synchronization and suspension coercion use the same synchronization
mechanism (e.g. a presence bit)

keyboard events

console prompts i

stream of characters

stream of tokens
prsis

stream of s—expressions
evlst

stream of values
prsos

stream of tokens

stream of characters

display events

s
0

0

H
screen:console:prompt

Indiana University Computer Science Department System Design Mettiods Laboratory Steven D Johnson DCC 2002 10

NOT s (map:not)

OR B (mapxpsior)

RSFF = \[S R].
rec

Qh » [0 ! OR:[S N0T:Q1]]
Ql «= [1 i OR: [S NOT:Qh]]

in
[Qh Ql]

bit-filter «= \ [C ! Cs] .
if:[saine?:[C "0"] [0 ! bit-filter:Cs]

same?:[C "1"] [1 ! bit-filter:Cs]
bit-filter:Cs

]

xps:
RSFF; [bit-filter;console:''[NL] S; *

bit-filter:console:"|NL] R; "]

Q.h

Indiana University Computer Science Department System Design Methods Laboratory Steven D Johnson DCC 2002 11

& xps:
RSFF; [bit-f ilter;console; "[Nil S; "

bit-filter;console:"[NL] R: "]

[
S; 00000000
[1 0] [

R: 00011100
0] [1 0] [1 0] [1 1] [0 1] [0 1] [0 1]

S; 000111000
[0 1] [0

R: 000000000
1] [0 1] [0 1] [1 1] [1 0] [1 0] [1 0] [1 0]

S:

Indiana University Computer Science Department System Design Methods Laboratory Steven D Johnson DCC 2002 12

Widget devices:

wndi: name —>■ char*

wndo: [name, char*] -^ []

Also: filei/o,
socketi/o*,
execi/o*, ...

wndot["[Qh Ql]'
prsos:
scnos:
xps:

(1D1X176.U1

RSFF:[bitfilter:vmdi:"S"
bitfilter:vmdi:"R" 11

Indiana University Computer Science Department System Design Methods Laboratory Steuen D Johnson DCC 2002 13

Concurrency

Implicit through bounded speculation

Explicit through (constructs such as) set

• Notation: expression A, computation a, result a.

• set -.iA B C] constructs list object L = [a /? 7]

• L becomes manifest as {.a h cl, or ih a c'\, or ih c a], etc.,

• There is an imprecise operational relationship with computational effort.

• Semantics (?!)

Indiana University Computer Science Department System Design Methods Laboratory Steven D Johnson DCC 2002 14

let [Qh Ql] = RSFF:[bit-filterrwndi:"S"
bit-filter:wndi:"R"]

in set: [wndo:["Qh" bit_to_chr:Qh]
vmdo:["Ql" bit_to_chr!Ql]
consume:wndi:"Click_CLOSE_to_terminate'

FHe'window,''' ' ,"'";"*■■;■■• ■■'■ .■,^,,,-.,,— ...—™~-,..-..-.,„ -^..: ,.-.-.,,,.,..,....

k)ooo
nooo

Cidse_lo_TermInale

-]

1111
1100
0000
0111
1100
0000
0

1 Close j|

rot
0000
0111
nil
1100
0111
nil
1

Indiana University Computer Science Department System Design Methods laboratory Steven D Johnson DCC 2002 15

More techniques, examples

• Time stamping prompts

• Synchronizing windows

• Dataflow

• Asynchronous interactions, merge and split

• Distributed modeling; sockets and pipes

• Scripting?

Indiana University Computer Science Department System Design Methods Laboratory Steven D Johnson DCC 2002 16

III. The SchemEngine Project

t^HiPii!4Myi^ W^
Objectives [Johnson, lUTR 544]

• Advancing design derivation • Heterogeneous reasoning

• System-level formal analysis • Embedded applications (1?)

• From semantics to hardware • Foundations for high-confidence

Indiana University Compuler Science Department System Design Methods Laboratory Steven D Johnson DCC 2002 17

DDD studies In language-driven architecture

www. cs. indiajia. edu/hmg/

• Garbage collectors in PLDs, VLSI, FPGAs [Boyer 86-90]

• SECD computer [Wehrmeister 89]

• Schemachine [Burger 94]

The bigger picture

• Compiler correctness [Wand, Clinger 80-85]

• Compiler derivation [Wand 80-85]

• Scheme based methodology and pedagogy

• Codesign tools

Indiana University Computer Science Department System Design t\flethods Laboratory Steven D Johnson DCC 2002 18

. CPU, GC, ALLOC, INIT derived
with DDD

• CPU is naive

• Memory system tuned to GC

• PLDs, mux-based FPGAs,
DRAM simms.

• Codesign using Scheme and
Logic Engine

-Spec, models

— Derived models

- Staging to hardware

OLD NEW

•ddr data •ddr data

^
1 i

S

1
read data OLDiddr

NEW addr

2fOm

NEW
semispace

OLD
semispace

II

TL

11

Indiana University Computer Science Department System Design Methods Laboratory Steven D Johnson DCC 2002 19

Relationshop to VLISP [Guttman, Ramsdell, Wand, L&SC 95]

Scheme Semantics

(combinator factorization)

Compiler Machine

Machine + heap

(data refinement)

(system factorization)

Target architecture System model

I (formalized synthesis)

Hardware implementation

Indiana University Computer Science Department System Design Methods Laboratory Steven D Johnson DCC 2002 20

Pending issues

• Retargetting Schemachine (Virtex, SDRAM?), cores

• Advancing CPU design

• Verification of system-level properties

• Behavior table case study

• Synchronization abstractions

- Hierarchical clocks

— Bisimulation modulo protocols

- Interface abstraction

— Software factorization

• Algorithmic correctness proofs

• Integrating modeling, derivation, and co-design

• Close with VLISP

• Embedded resource management

• Java
Indiana University Compuler Science Department System Design Methods Laboratory Steven D Johnson DCC 2002 21

Functional Design using
Behavioural and Structural Components

Richard Sharp
rws26acl.cam.ac.uk

University of Cambridge Computer Laboratory

William Gates Building

JJ Thomson Avenue

Cambridge CBS OFD, UK

Abstract
In previous work we have demonstrated how the functional language SAFL can be used

as a behavioural hardware description language. Other work (such as fj,FP and Lava) has
demonstrated that functional languages are apposite for structural hardware description.

One of the strengths of systems such as VHDL and Verilog is their ability to mix structural-
and behavioural-level primitives in a single specification. Motivated by this observation, we
describe a unified framework in which a stratified functional language is used to specify hard-
ware across different levels of abstraction: Lava-style structural expansion is used to generate
acyclic combinatorial circuits; these combinatorial fragments are composed at the SAFL level.
We demonstrate the utility of this programming paradigm by means of a realistic case-study.
Our tools have been used to specify, simulate and synthesise a DBS encryption/decryption
circuit. Area-time performance figures are presented.

1 Introduction
Hardware description languages (HDLs) are often categorised according to the level of abstraction
they provide. Behavioural HDLs focus on algorithmic specification and attempt to abstract as
many low-level implementation issues as possible. Most behavioural HDLs support constructs
commonly found in high-level programming languages (e.g. assignment, sequencing, conditionals
and iteration). In contrast. Structural HDLs allow a hardware engineer to describe a circuit by
specifying its hardware-level components and their interconnections. The process of automatically
translating a Behavioural HDL into a Structural HDL is often referred to as high-level synthesis.

Commercially the two most important HDLs are Verilog and VHDL [8, 7]. A contributing
factor to the success of these systems is their support for both behavioural and structural-level
design. The ability to combine behavioural and structural primitives in a single specification
offers engineers a powerful framework: when the precise low-level details of a component are not
critical, behavioural constructs can be used; for components where finer-grained control is required,
structural constructs can be used.^ However, the flip-side is that by supporting multiple levels
of abstraction both Verilog and VHDL are very large languages which are difficult to analyse,
transform and reason about.

In previous work we have designed SAFL [11], a behavioural HDL which supports a functional
programming style. An optimising high-level synthesis system has been implemented which com-
piles SAFL specifications into structural Verilog [8]. (We map the generated Verilog to silicon
using commercially available RTL compilers.) Other researchers have demonstrated that func-
tional languages are powerful tools for structural hardware specification [19, 14, 3]. In this paper

'Note the analogy with embedding assembly code in a higher-level software language.

we present a system which integrates both structural- and behavioural-level hardware design in a
pure functional framework. Our technique involves embedding a functional language designed for
structural hardware description into SAFL.

The remainder of this paper is structured as follows. After surveying related work (Section 2)
we give a brief overview of the SAFL language (Section 3). Our mechanism for embedding Lava-
style structural expansion in SAFL is then presented (Section 4). This methodology is demon-
strated by means of a realistic case-study in which a fully functional DES encrypter/decrypter is
specified (Section 5).

2 Related Work

There is a large body of work on using functional languages to describe hardware at the structural
level. Notable systems in this area include /zFP [19], HDRE/Hydra [14], Hawk [9] and Lava [3].
The central idea behind each of these systems is to use the powerful features found in existing
functional languages (e.g. higher-order functions, polymorphism and lazy evaluation) to build up
netlists from simple primitives. These primitives can be given different semantic interpretations
allowing, for example, the same specification to be either simulated or translated into a netlist.
However, whilst this technique is obviously appealing, there are problems involved in generating
netlists for circuits which contain feedback loops. The difficulty is that, in a pure functional
language, a cyclic circuit (expressed as a series of mutually recursive equations) naturally evaluates
to an infinite tree preventing the netlist translation phase from terminating.

A number of solutions to this problem have been proposed: O'Donnell advocates the explicit
tagging of components at the source-level [15]. In this system the programmer is responsible for
labelling distinct components of a circuit with unique values. Whilst this allows a pure functional
graph traversal algorithm to detect cycles trivially (by maintaining a list of tags which have
already been seen) it imposes an extra burden on the programmer and significantly increases
potential for manual error (since it is the programmer's job to ensure that distinct components
have unique tags). Lava [3] also uses tagging to identify cycles, but employs a state monad [20] to
generate fresh tags automatically. Although this neatly abstracts the low-level tagging details from
the designer, Claessen and Sands argue that the resulting style of programming is "unnatural"
and "inconvenient" [5]. In the same paper, Claessen and Sands propose another solution which
involves augmenting Haskell (the functional language in which Lava is embedded) with immutable
references which support a test for equality. This extension makes graph sharing observable at the
source-level but, although it is shown that many useful laws still hold, full equational reasoning is
no longer possible—for example, ^-reduction no longer preserves equality.

In this paper we present an alternative approach. By only allowing the description of acyclic
circuits through Lava-style structural static expansion and then combining these circuit fragments
at the SAFL level we facilitate the pure functional specification of complex circuits which can
contain feedback loops. We have not solved the observable sharing problem; instead we have
eliminated it: since cycles are not permitted at the structural level we do not have to worry
about infinite loops being statically expanded. Conversely, since feedback loops are represented
as tail-recursive calls at the SAFL-level there is no need to introduce impure language features.

Although most of the work on using functional languages for hardware description focuses on
the structural level some researchers have considered using functional languages for behavioural
hardware description. Johnson's Digital Design Derivation (DDD) system [4] uses a scheme-
like language to describe circuit behaviour. A series of semantics-preserving transformations are
presented which can be used to refine a behavioural specification into a circuit structure; the
transformations are applied manually by an engineer. This is a different approach to hardware
design using SAFL [11] where, although semantics-preserving transformations are used to ex-
plore architectural tradeoffs (including allocation, binding and scheduling [6]) at the source-level,
the resulting SAFL specification is fed into an optimising compiler which generates a structural
hardware design automatically.

3 Overview of the SAFL Language

SAFL has syntactic categories e (term) and p (program). First suppose that v ranges over a
set of constants. Let x range over variables (occurring in let declarations or as formal pa-
rameters), a over primitive functions (such as addition) and / over user-defined functions. For
typographical convenience we abbreviate formal parameter lists {xi,.. .,Xk) and actual parameter
lists (ei,... ,efc) to f and e respectively; the same abbreviations are used in let definitions. Then
the abstract syntax of the core SAFL language can be given in terms of recursion equations over
programs, p, and expressions, e:

e ::— t; | a; | if ei then 62 else 63 | let £ = e in CQ |

a{ei,...,earityia)) I /(ci, ■ • •, CarityC/))

p ::= fiin/i(x)=ei ... fun/„(f) = e„

It is sometimes convenient to extend this syntax slightly. In later examples we use a case-
expression instead of iterated tests; we also write e[n:m] to select a bit-field [n. .m] from the
result of expression e (where n and m are integer constants).

There is a syntactic restriction that whenever a call to function fj from function /, is part
of a cycle in the call graph of p then we require the call to be a tail call.^ (Note that calls to a
function not forming part of a cycle can occur in an arbitrary expression context.) This ensures
that storage for the variables and temporaries of p can be allocated statically—in software terms
the storage is associated with the code of the compiled function; in hardware terms it is associated
with the logic to evaluate the function body.

The other main feature of SAFL, apart from static allocatability, is that its evaluation is
limited only by data flow (and control flow at user-defined call and conditional). Thus, in the
form let x = (ei,..., e^) in CQ or in a call /(ci,..., e^) or a(ei,..., e^), all the Ci (1 < i < fc)
are evaluated concurrently. In the conditional if ei then 62 else 63 we first evaluate (only) ei;
one of 62 or 63 is evaluated after its result is known. SAFL has call-by-value semantics since
eager evaluation offers a greater opportunity for parallelism (i.e. we can execute a function call's
arguments in parallel without worrying about strictness).

Although up to this point we have referred to SAFL as a behavioural language, it is also capable
of capturing some structural aspects of a design. We say that SAFL is resource-aware to indicate
that a single user-defined function definition at the source-level corresponds to a single hardware
resource at the circuit-level. In this context multiple calls to the same function corresponds to
resource sharing^. We use SAFL-level transformations to express architectural tradeoffs such as
resource duplication/sharing and hardware/software co-design [12]. In essence these transforma-
tions preserve a specification's extensional semantics (the result returned) whilst changing the
intensional semantics (how the circuit is structured). A more in-depth description of the SAFL
language and its associated silicon compiler can be found in our recent survey paper [13]. For the
purposes of this document we provide a short example which illustrates the main points:

fun mult(x:16, y:16, ace:32):32 =
if (x=0 I y=0) then ace

else mult(x«l, y»l, if y[0:0] then acc+x else aee)

fun f(x:16):32 = mult(x, x, 0) + mult(13, x, 0)

From this specification, two hardware resources are generated: a circuit, Hnnit, corresponding to
mult and a circuit, Hf, corresponding to f. The two calls to mult are not inlined: at the hardware
level there is only one shared resource, F^uit, which is invoked twice by iJcube- The tail-recursive
call in the definition of mult is synthesised into a feedback loop at the circuit level. Since function

^Tail calls consist of calls forming the whole of a function body, or nested solely within the bodies of let-in
expressions or that are the consequents of if-then-else expressions.

^Our optimising compiler automatically deals with sharing issues by statically scheduling access to resources
where it can, and generating arbiters to perform scheduling dynamically otherwise [18].

arguments are evaluated concurrently, the two shift operations occurring in the recursive call to
mult are evaluated in parallel along with the conditional test and possibly, depending on the
conditional branch taken, the addition operation.

Each S AFL variable is annotated with a bit-width at its point of introduction. We use the form
x:u; to indicate that variable x has width w. Note that the widths of function result types are also
specified exphcitly (using the form fun f (...) :w;). Widths of constants can either be specified
explicitly or, more usually, inferred from their local context. As part of a simple type-checking
phase our SAFL compiler ensures that for each function call, /(f), the widths of arguments, x
match those specified in the signature of /.

4 Embedding Structural Expansion in SAFL

Resource awareness allows SAFL to describe the system-level structure of a design by mapping fun
declarations to circuit-level functional units. In contrast, systems such as /uFP and Lava offer much
finer-grained control over circuit structure, taking logic-gates (rather than function definitions) as
their structural primitives. We are not arguing that either approach is better: in practice both
are appropriate depending on the type of hardware that is being designed. Motivated by this
observation, we present a framework which integrates Lava-style structural expansion with SAFL.

Section 4.1 outlines our system for fine-grained structural hardware description which, for
the purposes of this paper, we will refer to as Magma^. In Section 4.2 we show how Magma is
integrated with SAFL.

4.1 Building Combinatorial Hardware in Magma

An argument in favour of Lava, Hydra and other similar systems, is that since they are embedded in
existing functional languages they are able to leverage existing tools and compilers. Furthermore,
use of non-standard interpretation of basis functions means that the same compiler can be used
to perform both hardware simulation and synthesis. These compelling benefits lead us to adopt
a similar approach. However, in contrast to Lava, which is embedded in Haskell [1], we choose
to embed Magma in ML [10]. The choice of ML is fitting for two main reasons: firstly, since we
only wish to describe acyclic circuits, ML's strict evaluation is appropriate for both simulation
and synthesis interpretations; secondly, since SAFL also borrows much of its syntax and semantics
from ML, both Magma and SAFL share similar conventions (an important consideration when we
are dealing with specifications containing a mixture of both Magma and SAFL).

4.1.1 An ML module system primer

In order to understand the workings of Magma some familiarity with the ML module system is
required. Whilst we do not describe the full details of the ML-module system here, this section
is sufficient to allow readers unfamiliar the module system to understand the remainder of this
paper. For more information the reader is referred to a more in-depth survey [16].

The basic element of ML's module system is the structure. The structure provides a way of
packaging both type and value (including function) definitions into a single entity. An important
feature of structures is that they provide a hierarchical name-space. For example, if a function, /,
is defined in a structure S we refer to it as S.f.

An ML signature provides a mechanism to specify interfaces. A signature contains a set
of name and type-declarations. One can use a signature to constrain a structure using the ":"
operator. Only values whose types are explicitly declared in the constraining signature are visible
outside the constrained structure.

Finally, the ML module system provides functors. A functor is essentially a parameterised
structure, dependent on another structure which is provided externally. For example, consider the

"•AS it is a restricted form of Lava.

ignature BASIS =

sig
type bit
val bO : bit
val bl : bit
val orb : bit * bit -> bit
val andb : bit * bit -> bit
val notb : bit * bit
val xorb : bit * bit -> bit

end

Figure 1: The definition of the BASIS signature (from the Magma Ubrary)

following (contrived) code fragment which defines a functor, FTR, parameterised over a structure,
S (where S is constrained by signature, SSIG):

functor FTR(S:SSIG) =
struct

val a = S.f(3)
end

Passing a structure, T, into FTR yields a new structure containing a single item, a, which has
the value T.f (3). Magma makes use of functors to parameterise hardware specifications over
interpretations of their basis functions. This provides a convenient way of using the same code for
both simulation and synthesis (see below).

4.1.2 Specifying Hardware in Magma

The Magma system essentially consists of a library of ML code. A signature called BASIS is
provided which declares the types of supported basis functions (see Figure 1). Values bO and bl
correspond to logic-0 (false) and logic-1 (true) respectively. Functions orb, andb, notb and xorb
correspond to logic functions or, and, not and xor. Two structures which implement BASIS are
provided:

• SimulateBasis provides a simulation interpretation. We implement bits as boolean values;
functions orb, andb etc. have their usual boolean interpretations.

• SynthesisBasis provides a synthesis interpretation. We implement bits as strings repre-
senting names of wires in a net-list. Functions orb, andb etc. take input wires as arguments
and return a (fresh) output wire. Calling one of the basis functions results in its netlist
declaration being written to the selected output stream as a side-effect. For example, if
the result of calling andb with string arguments "in.wirel" and "in-wire2" is the string
"out_wire" then the following is output to StdOut:

and(out_wire,in_wirel,in_wire2) ;

Figure 2 shows a Magma specification of a ripple-adder. As with all Magma programs, the main
body of code is contained within an ML functor. This provides a convenient abstraction, allowing
us to parameterise a design over its basis functions. By passing in the structure SimulateBasis
(see above) we are able to instantiate a copy of the design for simulation purposes; similarly, by
passing in SynthesisBasis we instantiate a version of the design which, when executed, outputs
its netlist. The signature RP_ADD is used to specify the type of the ripple_add function. Using
this signature to constrain the RippleAdder functor also means that only the ripple_add function
is externally visible; the functions carry .chain and adder can only be accessed from within the

signature RP.ADD =
sig

type bit
val ripple.add : (bit list * bit list) -> bit list

end

functor RippleAdder (B:BASIS):RP_ADD =
struct

type bit=B.bit
fun adder (x,y,c_in) = (B.xorb(c_in, B.xorb(x,y)),

B.orbC B.orb(B.andb (x,y), B.aiidb(x,c_in)),
B.andb(y,c_in)))

fun carry_chain f _ ([],[]) = []
I caxry_chain f c_in (x::xs,y::ys) =

let val (res_bit, c_out) = f (x,y,c_in)
in res_bit::(carry_chain f c_out (xs.ys))

end

val ripple.add = carry_chain adder B.bO
end

Figure 2: A simple ripple-adder described in Magma

functor. Note that the use of signatures to specify interfaces in this way is not compulsory but,
for the usual software-engineering reasons, it is recommended.

Let us imagine that a designer has just written the ripple-adder specification shown in Figure 2
and now wants to test it. This can be done by instantiating a simulation version of the design in
an interactive ML session:

- structure SimulateAdder = RippleAdder (SimulationBasis);

The adder can now be tested by passing in arguments (a tuple of bit lists) and examining the

result. For example:

- SimulateAdder.ripple.add ([bl,bO,bO,bl,bl,bl],[bO,bl,bl,bO,bl,bl])
val it = [bl,bl,bl,bl,bO,bl] : SimulateAdder.bit list

Let us now imagine that the net-list corresponding to the rippler-adder is required. We start
by instantiating a synthesis version of the design:

- structure SynthesiseAdder = RippleAdder (SynthesisBasis);

If we pass in lists of input wires as arguments, the ripple_add function prints its netlist to the
screen and returns a list of output wires:

- SynthesiseAdder.ripple.add (Magma.new.bus 5, Magma.new.bus 5)
and(w_l,w_45,w.46);
and(w.2,w.l,w_44);

and(w_149,w_55,w.l03);
val it = ["w.i49","w.l50","w.l51","w_152","w_153"]

The function new.bus, part of the Magma library, is used to generate a bus of given width (rep-
resented as a list of wires).

Process 1: ML Session

Magma

Process 2: SAFL Compiler

Execute Magma
under Synthesis

interpretation

Encounter Magma
code fragment

Verilog

Time

Figure 3: A diagrammatic view of the steps involved in compiling a SAFL/Magma specification

(* Magma library block containing Magma_Code functor: *)

<7.
signature RP_ADD =

... (* as in Figure 2 *)

functor Magma_Code (B:BASIS):RP_ADD =
... (* as RippleAdder functor in Figure 2 *)

fun multCx, y, ace) =
if (x=0 I y=0) then ace

else mult(x«l, y»l,
if y[0] then <'/. ripple_add '/,>(aec,x) else ace)

Figure 4: A simple example of integrating Magma and SAFL into a single specification

4.2 Integrating SAFL and Magma

Our approach to integrating Magma and SAFL involves using delimiters to embed Magma code
fragments inside SAFL programs. At compile time the embedded Magma is synthesised and the
resulting netlist is incorporated into the generated circuit (see Figure 3). This technique was
partly inspired by web-scripting frameworks such as ASP and PHP [2] which can be embedded
in HTML documents^. To highlight this analogy we use ASP-style delimiters "<'/." and "*/.>" to
mark the start and end points of Magma code fragments. Our compiler performs simple width
checking across the SAFL-Magma boundary, ensuring the validity of the final design.

The SAFL parser is extended to allow a special type of Magma code fragment at the beginning
of a specification. This initial Magma fragment, which is referred to as the library block, contains
an ML functor called Magma_Code. Functions within Hagma.Code can be called from other Magma
fragments in the remainder of the specification. Figure 4 illustrates these points with a simple
example in which the Magma ripple adder (initially defined in Figure 2) is invoked from a SAFL
specification. The precise details of the SAFL-Magma integration are discussed later in this section;
for now it suffices to observe that Magma fragments are treated as functions at the SAFL-level
and applied to SAFL expressions.

^When a dynamic web-page is fetched the ASP or PHP code is executed generating HTML which is returned
to the client.

The treatment of Magma fragments is similar to that of primitive functions (such as +, -, *
etc.). In particular, Magma code fragments are expanded in-place. For example, if a specification
contains two Magma fragments of the form, <*/. ripple-add '/.>, then the generated hardware
contains two separate ripple adders. Note that if we require a shared ripple_adder then we can
encapsulate the Magma fragment in a SAFL function definition and rely on SAFL's resource-
awareness properties. For example, the specification:

fun addCx, y) = <'/. ripple.add 7.> (x.y)
fun mult_3Cx) = add(x, add(x,x))

contains a single ripple adder shared between the two invocations within the definition of the
inult-3(x) function. Since embedded Magma code fragments represent pure functions (i.e. do
not cause side effects) they do not inhibit SAFL-level program transformation. Thus our existing
SAFL-level transformations corresponding to resource duplication/sharing [11], hardware/software
co-design [12] etc. remain valid.

Implementation and Technical Details

Consider the general case of a Magma fragment, m, embedded in SAFL:

<•/. m '/.>(ei,...,efc)

where ei,...,efc are SAFL expressions. On encountering the embedded Magma code fragment,
<*/. m '/,>, our compiler performs the following operations:

1. An ML program, M, (represented as a string) is constructed by concatenating the library
block together with commands to instantiate the Magma.Code functor in its synthesis inter-
pretation (see above).

2. The bit-widths of SAFL expressions, ei,... ,efc, are determined (bit-widths of variables are
known to the SAFL compiler) and ML code is added to M to construct corresponding
busses, Bi,...,Bfc, of the appropriate widths (using the Magma. newJbus library call).

3. M is further augmented with code to:

(a) execute ML expression, m(Bi,. ..,Bk), which, since the library block has been instan-
tiated in its synthesis interpretation, results in the generation of a netlist; and

(b) wrap up the resulting netlist in a Verilog module declaration (adding Verilog wire
declarations as appropriate).

4. A new ML session is spawned as a separate process and program M is executed within it.

5. The output of M, a. Verilog module declaration representing the compiled Magma code
fragment, is returned to the SAFL compiler where it is added to the object code. Our
SAFL compiler also generates code to instantiate the module, connecting it to the wires
corresponding to the output ports of SAFL expressions ei,... ,6^.

In order that the ML-expression m{Bi,..., B/c) type checks, m must evaluate to a function,
J^, with a type of the form:

(bit list * bit list * ... * bit list) -> bit list

with the arity of J^'s argument tuple equal to k. If m does not have the right type then a type-
error is generated in the ML-session spawned to execute M. Our SAFL compiler traps this ML
type-error and generates a meaningful error of its own, indicating the offending line-number of the
SAFL/Magma specification. In this way we ensure that the bit-widths and number of arguments
applied to <*/. m */.> at the SAFL-level match those expected at the Magma-level.

Another property we wish to ensure at compile time is that the output port of a Magma-
generated circuit is of the right width. We achieve this by incorporating width information corre-
sponding to the output port of Magma-generated hardware into our SAFL compiler's type-checking
phase. Determining the width of a Magma specification's output port is trivial—it is simply the
length of the bit list returned when m{Bi,.. .,Bk) is executed.

5 Case Study: DES Encrypter/Decrypter

Appendix A presents code fragments from the SAFL specification of a Data Encryption Standard
(DES) encryption/decryption circuit. Here we describe the code for the DES example, focusing on
the interaction between SAFL and Magma; the details of the DES algorithms are not discussed.
We refer readers who are interested in knowing more about DES to Scheier's cryptography text-
book [17].

The library block at the beginning of the DES specification defines three functions used later
in the specification:

• perm is a curried function which takes a permutation pattern, p, (represented as a Ust of
integers) and a list of bits, I. It returns I permuted according to pattern p.

• ror is a curried function which takes an integer, a;, and a list of bits, I. It returns I rotated
right by x.

• rol is as ror but rotates bits left (as opposed to right).

A set of permutation patterns required by the DES algorithm are also declared. (For space reasons
the bodies of some of these declarations are omitted.)

The code in Appendix A uses two of SAFL's features which have not been described in this
paper:

• The primitive function join takes an arbitrary number of arguments and returns the bit-
level concatenation of these arguments. As one would expect, the bit-width of the result of
a call to join is the sum of the bit-widths of its input arguments.

• SAFL's type declaration allows us to construct records with named fields. Curly braces, {
... }, are used as record constructors and dot notation (r./) is used to select a field, /, from
record r. After type-checking our SAFL compiler translates record notation directly into
bit-level joins and selects. (Recall that bit-level selects are represented using the e[n:m]
notation—see Section 3.)

Primitive functions corresponding to arithmetic and boolean operators use their standard symbols
(e.g. +, <, =). The binary infix operator, ("), is used for bit-wise exclusive-or.

The DES algorithm requires 8 S-boxes, each of which is a substitution function which takes
a 6-bit input and returns a 4-bit output. The S-boxes' definitions make use of one of SAFL's
syntactic sugarings:

lookup e with {VQ, ■■•, Vk}

Semantically the lookup construct is equivalent to a case expression:

case e of 0 => i;o I ...I (A; - 1) => Vk-i default Vk-

To ensure that each input value to the lookup expression has a corresponding output value we
enforce the constraint that k = 2'"-l where w is the width of expression e. Our compiler is often
able to map lookup statements directly into ROM blocks, leading to a significantly more efficient
implementation than a series of iterated tests.

Before applying its substition each S-box permutes its input. We use our Magma permutation
function to represent this permutation: <*/. perm p.inSbox '/.> (x). Other examples of SAFL-
Magma integration can be seen throughout the specification. The keyshif t function makes use

of the Magma ror and rol functions to generate a key schedule. Other invocations of the Magma
perm function can be seen in the bodies of SAFL-level functions: round and main. We find the
use of higher-order Magma functions (such as perm, ror and rol) to be a powerful idiom.

We used our tools to map the DES specification to synthesisable RTL-Verilog. A commercial
RTL-synthesis tool (Leonardo from Exemplar) was used to map synthesise the RTL-Verilog for
a Xilinx Virtex-V300 FPGA. The resulting circuit utilised less than 5% of the FPGA's resources
and could be clocked at 70MHz. Since encrypting/decrypting a block of data takes 17 cycles, a
throughput of 260 Megabits/sec can be achieved.

6 Conclusions and Further Work

In this paper we have motivated and described a technique for combining both behavioural and
structural-level hardware specification in a stratified pure functional language. Our methodology
has been applied to a realistic example. We believe that the major advantages of our approch are
as follows:

• As in Verilog and VHDL, we are able to describe large systems consisting of both behavioural
and structural components.

• SAFL-level program transformation remains a powerful technique for architectural explo-
ration. The functional nature of the Magma-integration means that our existing library of
SAFL transformations are still applicable.

• By only dealing with combinatorial circuits at the structural-level we eliminate the problems
associated with graph-sharing in a pure functional language (see Section 2). We do not sacri-
fice expressivity: cyclic (sequential) circuits can still be formed by composing combinatorial
fragments at the SAFL-level in a more controlled way.

In future work we would like to investigate using similar techniques for integrating systems
such as Lava or Magma directly into Verilog. Whilst this would not give the formal benefits of
our pure functional SAFL-Magma hybrid, it may help to make the tried-and-tested technique
of embedding a structural hardware specification using functional languages more accessible to
engineers working in industry.

Acknowledgements

This work was supported by (UK) EPSRC grant, reference GR/N64256: "A Resource-Aware
Functional Language for Hardware Synthesis"; AT&T Research Laboratories Cambridge provided
additional support (including sponsoring the author). The author would like to thank Alan My-
croft for his valuable comments and suggestions.

10

Appendix A: SAFL specification of a DES encrypter/decrypter

(* Magma Library block *)

signature DES =
sig

val perm: int list -> 'a list -> 'a list
val ror: int -> 'a list -> 'a list
val rol: int -> 'a list -> 'a list

val p_compress : int list
val p_key : int list

val p_inSbox : int list
end

functor Magma_code (B:BASIS):DES =
struct

(* DES permutation patterns ... *)

val p.initial = [58,50,42,34,26,18,10,2,60,52,44,36,28,20,12,4,
62,54,46,38,30,22,14,6,64,56,48,40,32,24,16,8,
57,49,41,33,25,17,9,1,59,51,43,35,27,19,11,3,
61,53,45,37,29,21,13,5,63,55,47,39,31,23,15,7]

val p.key = [57,49,41,33,25,17,9,1,58,50,42,34,26,18,
10,2,59,51,43,35,27,19,11,3,60,52,44,36,
63,55,47,39,31,23,15,7,62,54,46,38,30,22,
14,6,61,53,45,37,29,21,13,5,28,20,12,4]

val p.pbox = [16,7,20,21,29,12,28,17,1,15,23,26,5,18,31,10,
2,8,24,14,32,27,3,9,19,13,30,6,22,11,4,25]

val p_compress = [... <snip> ...]
val p_expaiision = [... <snip> ...]
val p_final = [... <snip> ...]
val p_inSbox = [1,5,2,3,4]

(* Higher-order permutation fiinction — given a list of bits
and a pattern it returns a permuted list of bits: *)

fun perm positions input =
let val inlength = length input

fun do_perm []_=[]
I do_perm (p::ps) input =

(List.nth (input,inlength-p))::(do.perm ps input)

in do_perm positions input
end

(* Rotate bits right by specified amount: *)
fun ror n 1 =

let val last_n = rev (List.take (rev 1, n))

11

val rest = List.take (1, (length l)-n)

in last_n Q rest
end

(* Rotate bits left by specified amount: *)

fun rol n 1 =
let val first_n = List.take (1, n)

val rest = List.drop (1, n)
in rest ® first_n
end

end

(* Definitions of S-Boxes (implemented as simple lookup tables) *)

fun sboxl(x:6):4 =
lookup <■/, perm p_inSbox */,> (x)

with {14,4,13,1.2,15,11,8,3,10,6,12,5,9,0,7,
0,15,7,4,14,2,13,1,10,6,12,11,9,5,3,8,
4,1,14,8,13,6,2,11,15,12,9,7,3,10,5,0,
15,12,8,2,4,9,1,7,5,11,3,14,10,0,6,13}

fun sbox2(x:6):4 =
lookup <'/. perm p_inSbox '/,> (x)

with { ... <snip> ... }

fun sbox3(x:6):4 = .. .

fun sbox8(x:6):4 = . . .

(* Do s_box substitution on data-block: *)

fun s_sub(x:48):32 =
join(sboxK x[47:42]), sbox2(x[41:36]),

sbox3(x[35:30]), sbox4(x[29:24]),
sbox5(x[23:18]), sbox6(x[17:12]),
sbox7(x[ll:6]), sbox8(x[5:0]))

(* Define a record which contains the left and right halves
of a 64-bit DES block and the 56-bit key. *)

type round_data = record {left:32, right:32, key:56}

(* Successive keys are calculated by circular shifts. The degree
of the shift depends on the round (rd).
We shift either left/right depending on whether we are
decrypting/encrypting. Note that the inline pragma ensures that
keyshift is never treated as a shared resource. *)

inline fun keyshift(key_half:28,rd:4,encrypt:l):28 =

define val shift_one = (rd=0 or rd=l or rd=8 or rd=15)

m

12

if encrypt then
if sliift_one then <*/. rol 1 '/.> (key.half)

else <•/. rol 2 '/.> (key.half)
else

if rd=0 then key.half
else if shift_one then <*/, ror 1 7.> (key.half)

else <•/, ror 2 '/.> (key.half)
end

(* A single DES round: *)

inline fun round(bl:round.data,rd:4,encrypt:l):round_data =
let

val Ikey = keyshift(slice(bl.key,55,28),rd,encrypt)
val rkey = keyshift(slice(bl.key,27,0),rd,encrypt)
val keybits = <'/. perm p.compress '/,> (jo in (Ikey, rkey))
val new.right = let val after.p = <*/, perm p.expansion */,>(bl.right)

in s.sub (after.p " keybits " bl.left)
end

in {left=bl.right, right=new_right, key=join(Ikey,rkey)}
end

(* Do 16 DES rounds: *)

fun des(c:4, rd:round_data,encrypt:l):round.data =
let

val new.data = round(rd, c, encrypt)
in if c=15 then new.data

else des(c+l, new.data,encrypt)
end

(* Apply Key-Permutation to incoming 64 key bits,
apply the initial permutation to incoming data-block,
do 16-rounds of DES on permuted data-block,
apply the final-permutation and return the encrypted block *)

fun main(block:64,key:64, encrypt:1):64 =
let

val block.p = <*/. perm p.initial '/,> (block)
val realkey = <'/. perm p.key */,> (key)
val output = des(0:4, {left=slice(block.p,63,32),

right=slice(block_p,31,0),
key=realkey}, encrypt)

in <*/, perm final '/,> (join(output.right, output.left))
end

13

References

[1] Haskell98 report. Available from http://www.haskell.org/.

[2] PHP hypertext preprocessor, http://www.php.net/.

[3] BJESSE, P., CLAESSEN, K., SHEERAN, M., AND SINGH, S. Lava: Hardware description
in Haskell. In Proceedings of the 3rd International Conference on Functional Programming
(1998), SIGPLAN, ACM.

[4] BOSE, B. DDD: A transformation system for digital design derivation. Tech. Rep. 331,
Indiana University, 1991.

[5] CLAESSEN, K., AND SANDS, D. Observable sharing for functional circuit description. In
Asian Computing Science Conference (1999), pp. 62-73.

[6] DE MICHELI, G. Synthesis and Optimization of Digital Circuits. McGraw-Hill Inc., 1994.

[7] IEEE. Standard VHDL Reference Manual, 1993. IEEE Standard 1076-1993.

[8] IEEE. Verilog HDL language reference manual. IEEE Draft Standard 1364, October 1995.

[9] MATTHEWS, J., COOK, B., AND LAUNCHBURY, J. Microprocessor specification in Hawk. In
Proceedings of the IEEE International Conference on Computer Languages (1998).

[10] MILNER, R., TOFTE, M., HARPER, R., AND MACQUEEN, D. The Definition of Standard
ML (Revised). MIT Press, 1997.

[11] MYCROFT, A., AND SHARP, R. A statically allocated parallel functional language. In Pro-
ceedings of the International Conference on Automata, Languages and Programming (2000),
vol. 1853 of LNCS, Springer-Verlag.

[12] MYCROFT, A., AND SHARP, R. Hardware/software co-design using functional languages. In
Proceedings of TACAS (2001), vol. 2031 of LNCS, Springer-Verlag.

[13] MYCROFT, A., AND SHARP, R. Higher-level techniques for hardware description and syn-
thesis. To appear. International Journal on Software Tools for Technology Transfer (STTT)
(2002).

[14] O'DONNELL, J. Hardware description with recursion equations. In Proceedings of the IFIP
8th International Symposium on Computer Hardware Description Languages and their Ap-
plications (April 1987), North-Holland, pp. 363-382.

[15] O'DONNELL, J. Generating netlists from executable circuit specifications in a pure func-
tional language. In Functional Programming, Workshops in Computing, Proceedings (1992),
Springer-Verlag, pp. 178-194.

[16] PAULSON, L. ML for the working programmer. Cambridge University Press, 1996.

[17] SCHNEIER, B. Applied cryptography: protocols, algorithms, and sourcecode in C. John Wiley
and Sons, New York, 1994.

[18] SHARP, R., AND MYCROFT, A. Soft scheduling for hardware. In Proceedings of the 8th
International Static Analysis Symposium (2001), vol. 2126 of LNCS, Springer-Verlag.

[19] SHEERAN, M. muFP, a language for VLSI design. In Proceedings of the ACM Symposium
on LISP and Functional Programming (1984).

[20] WADLER, P. Monads for functional programming. In Advanced Functional Programming
(1995), vol. 925 of LNCS, Springer-Verlag.

14

A Proof Engine Approach to Solving
Combinational Design Automation Problems

Gunnar Andersson, Per Bjesse, Byron Cook
Prover Technology

{guan,bj esse,byron}@prover.com

As a consequence of the fact that many combinational design automation
problems are NP- or coNP-complete, one fundamental approach to their solution

Ithr? H 7 . ? ^ P™P°«i«o^^l logic formulas, and apply some proof
method to decide whether the formulas always evaluate to true

However there exists a plethora of individual techniques for discharging
proposition^ proof conditions, including (but not Hmited to) the Davis-Putnam-
Loveland-Logeman method, Stalmarck's method. Binary Decision Diagrams, and
rewriting. Each proof technique has a particular characteristic in terms of space
and time behaviour, sensitivity to the size of the system, and the particular
domain it will work the best for. As a result, it is not unusual to combine tech-
niques in different ways when solving particular classes of combinational design
automation problems. °

Unfortunately, there does not exist an individual composition of techniques
that will be sufficient to deal with all problem instances at all future points in
time. As the design climate changes, and the structure and complexity of the
designs at hand change, every approach that is made up from a composition of
individual methods will thus have to be modified accordingly,

k nt!/.™'''^ Technology, we develop and maintain a plug-in proof engine that
is used to solve combinational logic problems in design automation tools This
proof engine, PROVER CL, is delivered with default composite analyses for a
number of domains.

As developers and maintainers of PROVER CL, we need to be able to ex-

InZJ T r"" T^^""""' °^ *^' ^'^^^'* ^^^'^'^^^ ^° tl^^t ^e c^n keep them
updated. We also need to be able to develop new analyses that work well in new
problem domains, and on problems with particular characteristics. It is thus
very important that our proof engine framework is constructed in such a way

Imlnt nf ff T "V^of^^^"^'^ '°'''*'"'* '^""^P"^'*^ ^^^ly«^^ ^i* a minimurn amount of effort, and (2) we can get the maximum amount of synergy between
the individual methods. ^^ ueiween

In this talk, we present an approach to addressing these issues that Prover
iechnology has been working on for quite some time-initial results were already
reported in early 2000 [CSOOj. '^'ie.iuy

Our approach builds on two key ideas. First of all, we structure our proof
engine in such a way that we view individual proof techniques as strategies; that
IS, functions between different proof states. Second, we define our strateg es to

be compositional in the seme that they can be combined In an, orte to form

more powerful proof-search ^^^p^ „„tol,lng our framework, and

preJlitw^rSrulaTptfl^SmW^^ro^^^^^^^^^^^
E^a:iLmethod^LBa*P..an>L„^^^^^^^^

nitude speedups compared '»'"<^';f^^/^X *T^^^^^ come

of our industrial partners.

References

ICSOO, Koen Clae.e. a.d C™.» ^^^^^^ ,i<::-tiZST^X
SrcrBepr/arar7.S.?r„Sn,s of theVpartment. Winter Meet.

ing).

State Abstraction Techniques
for the Verification of Reactive Circuits

Yannis Bres^ Gerard Berry^, Amar Bouali^, and Ellen M. Sentovich^

^ CMA-EMP/INRIA (Yannis.BresQcma.inria.fr)
Esterel Technologies ([Gerard.Berry, Amar.Bouali] Sesterel-technologies. com)

^ Cadence Berkeley Labs (EllenSQcadence. com)

Abstract. Several techniques for formal verification of synchronous cir-
cuits depend on the computation of the reachable state space (RSS) of
the circuit. Computing the exact RSS may be prohibitively expensive.
In order to simplify the computation, the exact RSS can be replaced by
an over-approximation of it, called the ORSS. The resulting verification
computation will be conservative, and the larger the ORSS, the more
conservative the approximation. A common technique for computing the
ORSS is to replace some of its state variables by inputs. In this paper,
we present a new approach based on variable abstraction using a three-
valued logic. We also present a way to reduce the over-approximation by
using structural information given by compilers of high-level languages
like Esterel, ECL or SyncCharts. A real example of an avionic system is
used to show the improvements that variable abstraction can bring.

1 Introduction

This paper deals with formal verification of synchronous designs derived from
programs written either in Esterel [4,5], ECL [15] or SyncCharts [1] languages.
These languages are well suited for control-dominated programs, both for hard-
ware and software targets. ECL and SyncCharts programs can be translated
into Esterel. The Esterel compiler translates such programs into the pair of a
sequential circuit and a data path.

Formal verification is currently performed on the control part of the program,
by XEVE [2], a BDD-based verifier publicly available, or the verifier built-in the
Esterel Studio tool [14]. The properties are expressed by synchronous bug ob-
servers [20], i.e. auxiliary signals that are emitted by the circuit in case of a
safety property violation. Verification amounts to checking that observer sig-
nals can never be emitted. To check observers, XEVE uses a forward reachabil-
ity technique well-adapted to Esterel control-dominated programs: it iteratively
computes the reachable state space of the circuit, or RSS, checking at each step
that observers cannot be emitted for any reachable state and any legal input.
Although this approach has proved successful in handling quite large designs,
it is limited by the potential explosion of BDDs during the computation of the
RSS.

This paper is devoted to improvements of the verification algorithm based on
variable abstraction. The global idea is to use over-approximations (ORSS) of the
exact RSS, which is usually an overkill to prove safety properties. Verification
using the ORSS is conservative: if a property is true for an ORSS, it is true
for the original circuit, but a given ORSS may not prove the desired property.
An ORSS can be obtained directly from the structure of the source program, as
explained in [25], but its impact on verification performance is relatively limited.
A better approach to simplify verification is to reduce the number of variables and
functions occuring during the BDD computations. We study two techniques for
this purpose: register inputization, in which a state variable is simply made free in
the RSS, and register abstraction, in which we use a three-valued logic. Register
inputization views some registers as free combinational variables, losing their
state-holding contents. Register abstraction uses a three-valued logic and makes
some register variables completely disappear from the BDD, which is attractive
to improve computation times, but is a stronger abstraction. Both techniques
can be combined with the aforementioned structural ORSS ones. We show the
efficiency of our method on a real avionics system, the fuel management of a twin-
engine jet aircraft from Dassault Aviation, and present two other experiments.

Section 2 presents the algorithms for RSS computation. Section 3 presents
the ORSS abstraction techniques. Section 4 presents the application example,
and section 5 concludes.

1.1 Related Work

One of the most studied approach to ORSS computation is based on FSM decom-
position: in [11], Cho et al. proposed approximate RSS computation algorithms
that decompose the set of state variables into disjoint subsets. Each subset is
used to compute a portion of the RSS, and the cross-product is taken afterwards
for an ORSS. Extension to non-disjoint subsets was described by Govindaraju
et al. in [16], and refined in [17] through addition of auxiliary state variables
that increase correlation between subsets. Such techniques perform a posteri-
ori quantification, as state variables from other subsets are replaced by inputs,
which can turns out to be very expensive.

Three-valued logic are often used in model checking partial or approximated
systems. For instance, [6] (refined in [7]) used three-valued logic in order to
interprete modal logic formulas on partial Kripke structures. However, this work
and its refinement ([19], [18],...) operates on labeled transition systems which are
explicitly explored, while our analysis are performed on systems represented as
Boolean circuits, symbolically explored using BDD-based techniques. Although
applications to symbolic techniques were considered, this has not yet been done
to the best of our knowledge.

2 Background

2.1 Finite State Machines

Let B = {0,1} be the Boolean set. The FSMs we consider are completely spec-
ified Mealy machines, defined as tuples {m,n,p,5,u:,T,J), where:

— m is the number of inputs.
— n is the number of state variables (registers).
— p is the number of outputs.
— 6 : B™ X B" -+ B" is the vector of elementary register transition functions.
— w : B'" X B" —> BP is the vector of elementary output functions.
— I: B" —> B is the characteristic function of the set of initial states.
— J : B™ —» B is the characteristic function of the valid input space. For

instance, if some inputs are implied by others, or if some pairs of inputs are
mutually exclusive, the whole input space would not be valid.

We use the same notation for a set or its characteristic function. Thus,
J {x) = 1 means x Q J. Also, for the sake of clarity, we omit the arrow on
top of vectorial functions or variables. Negated expressions are either prefixed
by -1 or overlined.

2.2 Standard RSS Computation

The usual way to compute the RSS of a FSM symbolically [9,12], is to find the
limit of the converging sequence of finite sets defined by the following equations:

RSSo = I

RSSfc+i = RSSfc U 6{J, RSSfc) (1)

where we use the standard extension of function to sets:

6{X,Y) = {6{x,y)\x&X,y€Y}

Using HDDs for characteristic functions, (1) becomes:

RSSfc+i = RSSfc U { r' 6 B" I 3r € RSSfc , 3i € B" . J(z) Ar' = 5[i,r)} (2)

In [12], Coudert and Madre introduced the image operator Img(/, x), which
computes the image of the vectorial function / on the state set of characteristic
function x^'-

Img(/,x) = Ar'.f 3r,i.x(r) A J(J) A f /\ rj, = /fc(i,r)j j (3)

^ Xr'.E is the standard A-calculus notation for the unnamed function of body E, with
argument r'.

Algorithm 1 presents an outline of the computation of RSS for a given FSM.
The main iteration that computes successive RSSfc sets is from line 4 to 17. Line
5 builds the domain for each iteration, based on most recently reached states and
the set of valid inputs J. Lines 8 to 10 contain the loop that builds the transition
function for the current iteration domain. Line 9 builds the function associated
with a single register, restricted for the current domain. Line 10 associates this
function with its register variable for the next state and combines it with the final
transition function. Line 12 applies the transition function to the last reachable
state set. Line 13 performs existential quantifications over the set of old register
variables and inputs. Line 14 substitutes the new register variables by the old
ones, in order to obtain a function over the set of old register variables for the
next iteration. Finally, Hne 15 computes the sets of new states and line 16 adds
this set to the final reachable state set. Iteration stops when the set of new states
is empty.

Note that this is only a crude implementation. In the next version, currently
under development, the complete transition function is actually never built as
we do in hnes 8 to 10, which may cause the computation to blow-up quickly.
The image is computed over partitions of the transition function and existential
quantifications are performed on-the-fly rather than in a simple pass, as we
mention in line 13. However, it is beyond the scope of this article to discuss such
improvements.

1 function RSS(FSM)
2 Result *- I
3 NewStates <- I
4 repeat
5 Domain *— J A NewStates
7 (5^1
8 for i e [l..n]
9 Si *— BuildRestrictedRegisterFunction(i, Domain)
10 6 ^ S A (NewRegVariable(i) = Si)
11 end for
12 Image *— S A NewStates
13 Image <- Quantify(Image, OldRegVariables+InputVariables)
14 Image <- Substitute(Image, NewRegVariables, OldRegVariables)
15 NewStates «— Image A -iResult
16 Result ♦— Result V Image
17 until NewStates = 0

Algorithm 1: RSS fixed-point computation

Example Using Algorithm 1, we can enumerate the reachable states of the
circuit of Figure 1. The initial state (1,0,0,0) of the circuit is indicated by
the values at the bottom of the registers. The first iteration reveals the new

state (0,1,0,0); the second iteration reveals the new state (0,0,1,0); the third
iteration reaches the fixpoint: the three registers ri, r^ and r^ are exclusive and
r^ is always 0.

Figure 1: A sequential circuit

RSS Computation Complexity Analysis In this section, the complexity is
expressed with respect to the BDD size and in the worst case.

The cost of -1 is constant and the cost of V, A is polynomial [9,12]. Unfor-
tunately, the cost of the Img operator, used in hne 13 in the Algorithm 1, is
exponential with respect to the number of variables, notably because of nested
existential quantifications. Informally, while 3a:./(x) amounts to computing
/(0)+/(l), 3a;,2/. /(x, y) amounts to computing /(0,0)+/(0,1)+/(1,0)+/(l, 1),
and so on.

In the sequel, we will study techniques to improve the RSS computation by
reducing the number of variables to apply a posteriori quantification to, in some
case at the expense of over-approximation.

3 ORSS Computation

3.1 Replacing State Variables by Inputs

Replacing state variables by inputs can improve the RSS computation: there
are fewer register functions to build, combine and manipulate during the image
computation, and fewer register variables to substitute. Replacing state variables
by inputs weakens the constraints between these variables, leading to an over-
approximated result.

Note that the number of a posteriori existential quantifications to perform
remains the same.

When a state variable is replaced by an input, the correlation between mul-
tiple occurrences of this variable in an expression is maintained. This is the case
in reconvergent fanout in a circuit. For instance, in Figure 2, there is a circuit
fragment generated from a statement like present I then ... else The go wire,
which determines whether a statement is active, is combined with the input /
presence wire. Even if the state variable driving this go wire is replaced by an
input, we are still able to determine that then and else branches are exclusive.

go- D
D

■then

else

Figure 2: Generated nets for a present I then ... else ... statement

Example With the example circuit of Figure 1, suppose we want to check that
n A r2 = 0. We can replace r4 with an input and apply the standard RSS
computation algorithm: from the initial state (1,0,0), the first iteration reveals
the new state (0,1,0), the second iteration reveals the new state (0,0,1) and the
third iteration reaches the fixpoint. We can still prove that ri A r2 = 0, but the
computation required fewer register functions.

Conversely, if we choose to replace rs with an input, starting from the' initial
state (ri,r2,r-4) = (1,0,0), the first iteration reveals the new states (0,1,0) and
(1,1,0), the second iteration reveals the new state (0,0,0) and the third iteration
reaches the fixpoint. We cannot prove that ri A rj = 0.

3.2 Variable Abstraction using Ternary-Valued Logic

Three-Valued Logic As a refinement of Malik's work [23], Shiple, Berry and
Touati [24] used Scott's three-valued logic to analyse cyclic circuits. Scott's three-
valued logic is built upon the usual two-valued Boolean logic by adding a third
value, noted 1, which means that a variable is undefined, and by extending usual
Boolean operators.

Similarly, we propose to introduce a third value meaning that a variable is
defined, i.e. either true or false, noted d. Indeed, the laws for d are exactly those
of ±, and we are simply using standard Scott Logic. However, we prefer to use
the d symbol since the intuition is different.

The 3 logic values {0,1, d} are respectively encoded by the pairs of Boolean
values {1,0}, {0,1} and {0,0}. In expressions, we encode variables we want to
keep by a pair {x,x), and variables we want to abstract by the constant pair
d = (0,0). Three-valued functions (TVFs) are encoded using a pair of Boolean

functions (/°,/^), such that /° (resp. /^) is the characteristic function of the
set for which / evaluates to 0 (resp. 1). The set /"^ of valuations for which /
is defined is f^ = f^+f^ and, by construction, /"-/^ is always false. Hence, /
does not characterize a partition of two sets (/, -■/) as in Boolean logic, but a
partition of three sets (/°,/\/''), as seen on Figure 3.

Figure 3: /°, /^ and f^ onsets

Standard operators over Boolean functions are extended to TVFs with re-
spect to the following formulas:

{f,n-{9',9')=^{f+9\fV)
For instance, f+g is false if both / and g are false, but true as soon as either /
or g is true.

The three-valued logic functions are known to be monotonic [8] in the lattice
{d<0,d< 1}.

Application to the RSS Computation By abstracting variables, we take the
previous technique a step further: while state variables replaced by inputs were
still present in intermediate computation, abstracted variable are completely
removed from the support of the BDDs.

To achieve this, we need to return to how the equality in (3) is computed.
As the equality a = 6 can be written as a-b + a-b, (3) is internally expanded into:

Img(/, x) = Ar'. f 3r,i. x(r) A J(i) A f /\ r',-h{i,r) + V.-JiJiyj] J (4)

Using three-valued logic, we cannot simply replace fk by fl and fk by /°, as
we do not have fl V /°, unlike fk^ fk, as represented on Figure 3. Instead of
a partition /, /, we now have three sets, /°, /^ and f^ = f° + f^, the latter
being the set of arguments for which we only know that / is defined. Therefore,
we must widen the positive function / by /°, and the negative function / by /^.

We introduce the Olmg operator as the widening of the standard Img operator,
defined as:

OImg(/, x) = Ar'. f 3r,z. x{r) A J{i) A (/\ r',-f°{i, r) + r'^-fl{i, r] (5)

Informally, we have replaced the characteristic function of the set "on which
/ is true" (the onset of /), by a superset "on which / is certainly not false", and
vice versa. However, when applied to concrete variables of the form (x, -'x), the
onsets of /° and /^ forms a partition of the domain on which / is defined, and
the result of (5) remains exact.

Since three-valued functions are monotonic, the Olmg operator is also mono-
tonic in the complete lattice of sets of states. Hence the algorithm terminates
with a unique least fixpoint.

Example Returning to the example circuit of Figure 1, in order to check that
n A r2 = 0, we can abstract r4, and apply the widened RSS computation algo-
rithm: from the initial state (ri,r2,r3) = (1,0,0), three iterations reveal the
states (0,1,0) and then (0,0,1). Having abstracted r4, we could prove that
T-j A 7-2 = 0 with less functions but also with less intermediate variables.

Conversely, if we choose to abstract rs, starting from the initial state
iri,r2,r4) = (1,0,0), three iterations reveal the states (0,1,0) and (1,1,0) and
then (0,0,0). We cannot prove that ri A 7-2 = 0.

Discussion As for the previous technique, there are fewer register functions to
combine and manipulate during the image computation, and even fewer variables
to substitute. Furthermore, the number of variables that have to be quantified a
posteriori is reduced: the former formula 3x,y . f{x, y) becomes /(d, 0) -|- f{d, 1)
when X is abstracted, instead of /(0,0) + /(0,1) + /(1,0) + /(1,1). One can
argue that the number of register function to build is increased, but this step of
the RSS computation is far from being critical.

On one hand, abstraction reduces the number of BDD variables and functions
to compute, by early quantification. Of course, if the abstracted variables were
really irrelevant, they would have also disappeared from the BDDs, but during
its construction; our technique removes them before.

On the other hand, we have seen that the equality must be widened, which
leads to an over-approximated result. Furthermore, the information we loose in
the abstraction process is the_correlation between positive and negative instances
of a variable. For instance, dd is abstracted to d instead of 0. Returning to Figure
2, choosing to abstract the test variable would lead to loose the knowledge that
both true and false branches are exclusive.

So far, the selection of state variables to be abstracted still depends on proper
human designer guidance.

3.3 Refinement Using the Esterel Selection Tree

Esterel [4,5] is a, control-dominated language: the control part has a hierarchi-
cal structure, reflecting nesting of statements in the original programs, while
communication between different parts of the program is handled through in-
stantaneously propagating signals or shared variables. Roughly, every construct
in the program has an associated selection wire indicating whether this con-
struct is active or not. The value that these selection wires carry comes from
combinations of registers, i.e. the current state of the machine. Selection registers
are then combined with tests to activate other areas of the program and finally
propagated to the registers to determine the next FSM state.

As generated from high-level language, Esterel circuits feature some interest-
ing information concerning their design, notably the hierarchy of pauses, i.e. reg-
isters generated by explicit or implicit pause statements. For instance, consider
Program 1, where declarations are omitted. Square brackets group statements,
semi-colons indicate sequence, and || indicates parallelism. The await instruc-
tion contains an implicit pause: once the first instant an await statement was
activated is over, the next statement is executed as soon as the awaited signal
appears. Therefore, each await statement will generate a register in the circuit.
Because await statements at Hnes 2 and 4 are executed in sequence, their reg-
ister are exclusive; similarly, because block 1-9 is executed in sequence with the
await statement at line 10, the register coming from line 10 is exclusive with
all registers coming from block 1-9. On the other hand, blocks 2-5 and 7-8 are
compatible, so no relation can be infered.

In Esterel circuits, such an information is stored in the Selection Tree [25],
where non-terminal nodes indicate either compatibility or exclusivity and termi-
nal nodes are registers. The Selection Tree of Program 1 is represented on the
right-hand side, where exclusive nodes are noted with sharps. From this Selection
Tree, we can build a BDD that alone gives an over-approximation of the RSS of
the circuit, for all the states it denies cannot be reached by construction. With
adequate variable ordering, the construction of such a BDD is straightforward.
In the sequel, we will see that this BDD can be used both as an upper bound
for over-approximation, and to maintain some constraints on loosen variables.

Use of the Esterel Selection Tree When replacing state variables by inputs,
the Esterel selection tree can be used in two ways.

First, we can enhance the input care set with constraints involving at least
one state variable that has been replaced by an input, as the input care set can
actually reference both inputs and combinational inputs, i.e. real state variables.

Second, we can build, from the relations involving state variables, an up-
per bound for over-approximation, or over-approximation ceiling. Erroneously
discovered states that cannot be reached by construction are removed by inter-
secting the set of new states with the over-approximation ceiling, at the end of
each step of the RSS computation process.

When abstracting variables, we cannot refine the input care set with relations
from the Esterel selection tree, as there is no variable any more. However, we

1 [
2 await 11;
3 do something;
4 await 12;
5 do something
6 II
7 await 13;
8 do something
9];
10 await 14;
11 do something

pause 1 #
#--■

pause 2 - - - #

pause

pause .

-#

Program 1: Esterel Example Program

are still able to reference the subset of state variables that are not abstracted,
and build an over-approximation ceiling BDD.

4 Experiments

We have implemented the presented technique on top of the TiGeR [13] BDD
package. Our tool was run on a 750MHz Pentium III machine with 1GB of
memory.

We present data on an industrial Esterel circuit: the fuel-management system
of a twin-engine jet aircraft from Dassault Aviation, described in [21]. This
system consists in several modules: 2 engines, 2 feeder tanks and several internal
and external tanks. The main function of this system is to ensure that the engines
are properly fed, while managing system the component failure, the fuel load
balancing between the two sides of the aircraft, the in-flight refueling, etc. Most
of these tasks are handled by the two feeder tanks, and several safety properties
were written for these modules. The complete design has 9,154 nets and 509
registers. Computing the exact RSS of the complete design is intractable on a
1GB machine. However, when focusing on only one safety property at a time,
this become largely feasible after a simple pass of transitive network sweeping,
which may remove more than 300 registers.

Tables 1 and 2 shows comparisons of the aforementioned approaches to the
RSS computation, for two properties of the design that feature regular behavior
of our tool (other properties only show behaviours similar to either one of the
featured properties). The first line shows the results for exact computation, the
second when some state variables are replaced by inputs, the third when some
state variables are abstracted, and the fourth when some state variables are ab-
stracted and the Esterel selection tree is used as an over-approximation ceiling.
Time and memory columns do not take into account the file parsing and net-
work construction times and memory usages, as they do not depend on the RSS
computation approach, and, on such examples, may become the most expensive

part of the process (although their complexity is linear and usually negligible).
The jlL column indicates the number of remaining registers after the transitive
network sweeping pass.

Following the advices of the designers, we chose to abstract or replace by
inputs the state variables of all of the internal and external tanks but the feeder
ones. Note that the hierarchical nature of Syncharts designs allows our tool to
work with simple abstraction hints from the designer.

method time mem.
(MB)

#L total reachable states at step n \
1 2 3 4 5 1

exact >10mn 79 178 8,749 3.01e8 1.33el3 3.33el3|3.67el3
repl. by inputs 3.8s 6 59 37 341 3,738
abstracting 1.7s 7 59 37 2.71e5 9.48e6 9.51e6
abs. + seltree 1.5s 6 59 37 1,670 6,807 7,407

Table 1: Verification of Property 4

method time mem.
(MB)

#L total reachable states at step n\
1 2 3 4 5|6| 7

exact >2mn 21 120 2 1.66e4 2.41e8 7.03e8 8.85e8
repl. by inputs 0.6s 5 37 2 70 229 245
abstracting 0.3s 5 37 2 4.33e3 1.07e6 2.42e6
abs. + seltree 0.3s 5 37 2 865 7.92e4 1.77e5

Table 2: Verification of Property 6

By removing state variables, we reduce the number of functions to build and
compute the image of. We also reduce the number of existential quantifications
to perform. Also, we cut some transitive links between functions, then allowing
the transitive network sweeping pass to remove more state variables. When the
removed variables are properly chosen, this results in great speed and memory
usage improvements: there are several orders of magnitude of differences be-
tween the exact RSS computation and the least over-approximation technique.
Furthermore, less iterations may be required to reach the fixpoint. Both tables
show that abstracting state variables can lead to a greater over-approximation
than replacement by inputs; for Property 4, this even require a additional it-
eration step. However, using relations between state variables expressed by the
Esterel selection tree allows us to reduce significantly the over-approximation.

In any case, state variables to be removed must be selected with care. If not,
excessive over-approximation may lead to a snowball effect: unreachable states
are found reachable, then the image of these states must be computed, which

may lead to other unreachable states found as reachable, and so on. As variable
abstraction computes greater over-approximations than replacement by inputs,
we can naturally expect results to be worse when they are already bad with

replacement by inputs.
On another example, time improvements due to variable abstraction range

from 20X to 70X and memory reduction from 5X to lOX, but the standard
technique of replacing state variables by inputs achieves better results. We are
currently improving the ORSS computation algorithm in order to obtain better

figures.

5 Conclusions

This paper presents a technique to improve the computation of the Reach-
able State Space of sequential circuits, by computing over-approximations of it
through variable abstraction, using a three-valued logic. This approach takes the
commonly used technique of replacing state variables by inputs a step further.
When state variables to be removed are properly chosen, relevant improvements
of both time and memory usage can be noticed in comparison with replacement
by inputs. Excessive over-approximation may be confined by using by construc-
tion RSS over-approximation ceilings, expressed by high-level structural data,

like the Esterel selection tree.

References

1. Charles Andre. SyncChaHs: A Visual Representation of Reactive Behaviors, I3S,
1996.

2. Amar Bouali. XEVE, an Esterel Verification Environment. Proceedings of the 10th
International Conference on Computer Aided Verification, CAV'98, 1998.

3. J. R. Burch, E. M. Clarke, D. L. Dill, K. L. McMillan. Symbolic Model Checking
- 10^° States and Beyond Proceedings of the 5th IEEE Symposium on Logic in
Computer Science, June 1990.

4. Gerard Berry. The Esterel Language Primer CMA, Ecole des Mines de Paris and
INRIA. Available with the Esterel system and updated for each release.

5. Gerard Berry. The Constructive Semantics of Pure Esterel. CMA, Ecole des Mines
de Paris and INRIA. July 2, 1999.

6. G. Bruns, P. Godefroid. Model Checking Partial State Spaces with S-Valued Temporal
Logics. Proceedings of the 11th Computer Aided Verification International Confer-
ence, CAV'99, 1999.

7. G. Bruns, P. Godefroid. Generalized Model Checking: Reasoning about Partial State
Spaces. Proceedings of the International Conference on Concurrency Theory, Con-
cur'OO, August 2000.

8. J.A. Brzozowski, C.-J. H. Seger. Asynchronous Circuits. Springer-Verlag, 1996.
9. Olivier Coudert, Christian Berthet, Jean-Christophe Madre. Verification of Syn-

chronous Sequential Machines Based on Symbolic Execution. Proceedings of the
Workshop on Automatic Verification Methods for Finite State Systems, volume 407
of Lecture Notes in Computer Sciences, June 1989.

An approach to the introduction of formal validation in an
asynchronous circuit design flow

Dominique Borrione, Menouer Boubekeur, Emil Dumitrescu (VDS group)
Marc Renaudin, Jean-Baptiste Rigaud, Antoine Sirianni (CIS group)

TIMA Laboratory, Grenoble, France

1. Introduction

Design flows are well established for synchronous designs, and supported with efficient synthesis,
simulation and verification software, starting from the Register Transfer level. Asynchronous designs
have long been neglected, due to their higher bit cost, and tuning difficulty. However, with the advent
of systems on chip involving the interaction between analog and digital parts, and the communication
of physically distant circuit modules using long interconnections, the global synchrony hypothesis is
no longer realistic; the design of locally synchronous and globally asynchronous systems on chip
(SOC's) is a possible answer to the efficient reuse of existing components, using a distributed control
and asynchronous interfaces. One of the objectives of the on-going research described in this
contribution is to investigate the verification of mixed synchronous and asynchronous circuits, starting
from a high-level specification.

Typically, asynchronous circuits are specified at logic level, using a CCS or a CSP-like formalism
[Mar90, Ber93]. In our work, we write the initial behavioral description in the CHP language (from
Caltech). Following the works of A. Martin [MLM97, MLM99], most of the initial effort at TIMA has
been devoted to identifying the conditions required on the initial description, and correctness
preserving transformations, in order to synthesize asynchronous circuits. The resulting TAST design
flow is shown on Figure 1. Process decomposition and refinements lead to an internal Petri Net
formalization, from which a choice of architectural targets is available: micro-pipeline, quasi delay
insensitive circuit, or synchronous circuit. A dedicated compiler produces a structural gate network, in
source VHDL, for simulation and back-end processing using commercial CAD tools. This approach
has supported, up to silicon fabrication, the design of two asynchronous microprocessors:
ASPRO[RVR99] and MICA[ABRO 1].

The recent introduction of formal methods in the design flow has been motivated by an extension of
the previous compiler to accept a wider range of CHP primitives, and a need for higher correctness
insurance. Up to now, simulation was the only verification means, and it came late in the design
process. Trying to model check the synthesis result is difficult because each gate, each flip-flop is a
process, each wire is a state element; an event is the arrival of a valid value on a wire, and all inter-
leavings of events may a priori occur. Applying brute force model checking quickly leads to
combinational explosion.

As an initial feasibility study, we propose to use existing verification tools, even if they were initially
not intended for asynchronous designs. More precisely, commercial model checkers used in hardware
verification, starting from a standard Verilog or VHDL description, usually assume the existence of a
single synchronization master clock for the circuit. In order to provide an early validation of the initial
model properties, we extract a state machine from the kernel Petri Net and give a VHDL
representation for it. In this first prototype, we introduce a fictitious clock that allows us to examine
the model after each transition firing in a sequential path, and to use existing model checking software.
In addition, the translation takes advantage of the known restrictions on the Petri Net, being the
semantic representation of a CHP program.

In this paper, after discussing the design flow, we describe the main CHP communication and
synchronization primitives, their Petri Net model, their "pseudo clocked" VHDL translation, and the

verifications that could be performed on the model, before and after synthesis. We then propose a set
of transformations to produce a more compact and efficient coding of the state machine. As a running
example, we use a simple, yet characteristic, selector module, and show examples of safety and
liveness properties that have been verified using "Formal Check".

2. The TAST Design Flow

At TIMA, we are developing TAST, an open design framework devoted to asynchronous circuits.
TAST is the acronym for "Tima Asynchronous Synthesis Tools". It mainly consists in three parts: a
compiler, a synthesizer and a simulation-model generator (Figure 1). TAST offers the capability of
targeting several outputs from a high level CSP-like description language called CHP (Communicating
Hardware Processes).
The compiler translates CHP programs into Petri Nets (PNs) associated to Data Flow Graphs (DFGs).
Such a model has been used for years to describe synchronous circuits and systems. However, it finds
a particularly adequate application in the field of asynchronous digital circuits and systems design.
The synthesizer is in charge of generating asynchronous circuits from the Petri Net representation of
the CHP programs. Asynchronous digital circuit synthesis is based upon DTL (Data Transfer Level)
specification. It provides a set of rules to guarantee that PN-DFG graphs are synthesizable into
asynchronous digital circuits. TAST synthesizer is so far able to address two kinds of asynchronous
circuits: Micropipeline [Sut89] and Quasi Delay Insensitive [Mar90] asynchronous circuits. In the
following, only delay insensitive asynchronous circuits are considered.
Behavioral VHDL models of the CHP specification are generated to perform CHP programs
verification using simulations (simulation niodeLgener_ator)_.

CHP Code

CHP Compiler

Simulation Model Generator

 i
Behavioral Asynchronous

VHDL Model

VHDL Custom Libraries ,

for Simulation

Reports |< VHDL Simulator

DTL' Compliance Checker

Synthesizable Petri Net-DFG

i nP' Flavor QDI Flavor
i Synthesizer Synthesizer

VHDL Gate Level Netlist

Custom Cell Libraries

: Std Cell Libraries

Back-end Tools

Figure 1: The TAST design flow.

The introduction of a formal verification flow in TAST starts from the Petri Net - DFG format.
(Figure 2). A first step consists in choosing an appropriate communication protocol, as well as
expanding all communication primitives according to this protocol. A state encoding is associated to
the resulting Petri Net, based on its global place marking. From this state encoding, a Finite State
Machine interpretation of the Petri Net is constructed and implemented as a VHDL behavioral model.
The model obtained can be directly fed to an industrial model-checking tool, accepting a standard
HDL entry. The formal verification task consists in modeling the environment of the description we
wish to verify, and writing a set of temporal properties that need to be satisfied.
On the other hand, the asynchronous synthesis tool produces a VHDL gate level netlist, which can also
be fed to a model-checker. Thus, the compliance of the synthesized model with respect to its
specification can be checked, by trying to prove the same set of temporal properties on the
specification and the synthesis result.

Figure 2: formal verification flow of CHP programs and QDI asynchronous circuits.

3. From CHP programs to Petri Nets

There is no agreement today on a specification language that provides all the facilities to model and
synthesize asynchronous circuits. However, CSP-like languages are widely used. Caltech University
have proposed CHP (Communicating Hardware Processes) [Mar90][Mar93], Philips has defined
Tangram [BKR91][VB93], the university of Utah has developed a tool based on Occam [BS89], and
Manchester has defined BALSA [BE97]. All these languages are using the basic concept of CSP :
concurrent processes communicating with channels [Hoa78].
We have developed a proprietary high level description language derived from CHP with specific
features to cope with communication protocols, data encoding, arbitrary precision arithmetic, non-
deterministic data flow, hierarchy, project management and, traceability. All these features make our
modified CHP a very practical system description language to develop with.

3.1. CHP syntax basics

In this section, the CHP language is briefly introduced to provide the minimum necessary to enable the
reader to read and understand the programs used through out the paper.

Literals
Integers constants are noted in fixed precision with the following syntax:
"<digit>.<digit>..." [base][length] which specifies a vector of "length" element represented in base
"base".
Each digit belongs to [0, base-1], and base and length are non-zero natural numbers.
Example : "1.9.7.9"[10] is obviously number 1979.

"1.2.3"[4] = 1*4^ + 2*4' + 3*4° = 27.

In order to avoid this notation for usual bases such as 10 and 2, standard notations are also supported
for integers and binary numbers.

Unsigned data types

MR[B] : Multi-Rail in base B
This type represents a number between 0 and (B - 1), coded with the "1-of-n" delay insensitive code.

Example :
VARIABLE b: MR [B]; -- declaration

b := "x" [B]; - assignment, with 0 <= x < B

MR[B] [L] : Vector ofL Multi-Rails in base B
This type corresponds to a vector of L elements of type MR [B]. It represents a number between 0 and
(B'^L-l).
Example :

VARIABLE b : MR [B] [3]; -- declaration
b := "0.0.0" [B]; -- assignment

Based on these basic unsigned types, other types are defined to make designers' life easier. They are:

DR : Dual Rail - equivalent to MR[2]
DR [L] : Vector ofL Dual Rail elements - equivalent to MR[2] [L]
BIT : Binary - equivalent to MR[2]
BIT[L] : Vector of Bits - equivalent to MR[2][L]
BOOLEAN ; equivalent to MR[2]
NATURAL[Max] : MR[2][L] type ranging from 0 to Max value.

L is the superior integer part of (Log2 [Max+1]). Max is a natural value, which must be
specified during the declaration of the element of type NATURAL.

S R : Single Rail - equivalent to MR [1].
This type does not carry any value, it allows the specification of synchronizations between
communicating processes. The SR type only applies to Channel or Port declaration. It is not
relevant for variables.

Signed data types
All the types previously presented, except SR, have a signed equivalent. The complement to the

base B is used to encode negative numbers. Thus, the same representation as unsigned types is used,
but the highest order digit is interpreted as the sign.
SMR[B] : Signed Multi Rail in base B
This type represents a number between -(B / 2) and (B / 2) - 1, if B is even or between -(B - 1) /2 and
(B - 1) / 2, if B is odd. The representation of a negative value is obtained with the complement to the
base B. For instance in base 16, -2 is represented by 14 (16 + (-2) = 14).
EXCXIYIDIG •

VARIABLE b : SMR [4]; -- declaration
b := "2" [4]; -- assignment: b = 2 - 4 = -2

SMR[B][L] : Signed Vector ofL Multi Rail in base B
This type corresponds to a signed vector of L elements of type MR [B]. To evaluate the nuinber,

only the highest order digit is signed, the other digits keep their positive values. For instance "1.5"[16]
= 1*16 + 5 = 21 while "15.5"[16] = (15 - 16)*16 + 5 = -11.
Example :

VARIABLE b : SMR [3] [3]; -- declaration
b := "2.2.2" [3] -- b = (-1)*3^ + 2*3 + 2 = -1

From these basic signed types, other types are defined as abbreviations:
SDR : Signed Dual Rail -equivalent to SMR [2].
SDR[L] : Sigfied Vector ofL Dual Rail values, equivalent to SMR [2][L].
INTEGER[Max] : SMR [2][L] type ranging from -(Max+1) to Max.

Operators
The following operators are available in our CHP language :
Comparison
Arithmetic :
Logical:
Communication actions :
Assignment/conversion:
Sequential/parallel:

Control structures

=, /=, <, <=, >, >=
+, -, *, mod, sll, sla, srl, sra, rol, ror
not, nand, and, nor, or, xnor, xor
! (send), ? (receive), # (probe)

; (sequential) and "," (parallel)

Deterministic selection. It waits for a unique true guard. Once one of
the guards is evaluated to true, it executes the associated bloc and
terminates the selection.

Non-deterministic selection. It waits for one or more true guards.
One of the true guards is selected, and the associated bloc executed.
The selection then terminates.

Deterministic loop. While a unique guard is true, it executes the
corresponding bloc. It terminates when none of the guard is true.

[guardi => blod
@ guard2 => bloc2
@ ...
]
[guardi => blod
@@ guard2 => bloc2
@@ ...
]
*[guardi => blod
@ guard2 => bloc2
@ ...

Non-deterministic loop. While one or more guards are true, one of
the true guards is selected and the corresponding bloc executed. It
terminates when none of the guard is true.

Program structure

A CHP COMPONENT is made of its communication interface,
followed by a declaration part and its body. The communication
interface is a directed port list, similar to VHDL. The declaration
part declares local objects like channels and constants. The body is
made of concurrent processes or component instances. They can all
communicate with each other, and also with the component ports.
Point to point communication only is allowed.

A process is made of a port list, a declaration part and a body. It is
important to mention that a process is a loop. When the last
instruction completes, the process restarts the first instruction.

@@
@@
]

guardi => blod
guard2 => bloc2

COMPONENT
component_name
PORT (portjist)
{declaration part}

Begin
component body

End component_name;

PROCESS process-name
PORT (portjist)

{declaration part}
[
instruction list

Example

As an example, consider the program of Figure 3 which specifies a selector. Because there is only one
process, the component port Hst and the process port list are identical. Channel C is read in the local
variable "ctrl" which is tested using a deterministic choice structure. If "ctrl" is '0' then the value read
from channel "E" is propagated to channel "SI". If "ctrl" is T then the value read from channel "E"
is propagated to channel "S2". Finally, if "ctrl" is "3" then the value read from channel "E" is
propagated to both channels "SI" and "S2" in parallel.

COMPONENT Selector
PORT(E:inDR; C: in MR[3][1];

S1,S2:outDR)
Begin
PROCESS main

P0RT(C:inMR[3][1]; E: in DR;
S1,S2:outDR)

Variable x: DR;
Variable Ctrl :IVIR[3][1];

*[C ? Ctrl; [Ctrl = "0"[3] => E ? x; S1 I x
@ ctrl = "1"[3]=>E?x;S2lx
@ Ctrl = "2"[3] => E ? x; S1 ! x, S2 ! x

]
]
End Selector;

Figure 3 : CHP code of a Selector

3.2. Petri Net generation

In order to translate CHP programs into Petri Nets we are considering the Petri Net representations of
all the language structures plus those of the sequential and parallel operators. Other instructions and
expressions are represented using Data Flow Graphs which are associated to places and transitions.
Instructions are associated to places whereas guards are associated to transitions.

Selection operator: [Gi => Cijwith i € {l..n}
The corresponding Petri Net is described in Figure 4. This Petri Net models both types of selection,
the deterministic and the non-deterministic one.

not(Gl)
and not(G2)
andnot(Gi)..

Figure 4 : Petri Net
for the selections

Figure 5 : Petri Net for the repetitions

Repetition operator: "'[Gi => Ci] with i e {l..nj
The corresponding Petri Net is described in Figure 5. Here again, the Petri Net models both the
deterministic and the non-deterministic repetition.

Sequential operator: Cl ; C2
Statement C2 is executed after the completion of instruction Cl. The Petri Net of Figure 6 is
modelling this operator.

Parallel operator: Cl, C2
Statements Cl and C2 are ex ecuted concurrently. The Petri Net of Figure 7 is modelling this operator.

Figure 6 : Petri Net for the
sequential operator Figure 7 : Petri Net for the parallel

operator
Example
Figure 8 gives the Petri Net obtained from the translation of the CHP program of the Selector (Figure
3). Place PO is the first place of the repetition. This repetition has a unique implicit guarded command
which is [True => C ? Ctrl...]. Hence, when the command execution completes, the execution has to
restart from place PO. Moreover, place Pi is the initial place to start from at the beginning of the
execution. Therefore, Pi has to be initially marked.
The first statement to execute is "C ? Ctrl". This instruction is represented by a DFG and is associated
to place PI. It is followed by a sequential operator, modelled with transition Tl. Then the next
instruction is a selection starting from place P9. Within the third guarded command note that the
parallel operator is represented by places P3, P4 and transitions T3 and T5

Figure 8 : Petri Net of the Selector.

4. From Petri Nets to gates

First of all, it is worthwhile to mention that deriving Petri Nets from DTL compliant CHP programs
ensures that there exists a quasi delay insensitive gate implementation of the Petri Nets. Then, in order
to derive a gate implementation from the Petri Net, channel and variable encoding as well as
communication protocols have to be precisely defined.

4.1. Data encoding

As discussed in section 3.1, all data are declared and built using the basic MR[B] type. For quasi delay
insensitive hardware, type MR[B] must adopt delay insensitive code and implementation. Hence, a
digit of type MR[B] is physically implemented with B rails (MR stands for Multi Rail), each wire or
rail carrying out one of the B possible values that the digit can take (between 0 and B-1). It is clear that
this coding is a one hot coding since at most one bit is one.
Channels are using the same encoding convention. In addition, an acknowledge signal is added to
support handshaking communication protocols. As an example the hardware representation of variable
"Ctrl" and channel E of the CHP program of Figure 3 are depicted in Figure 9.

MR[3] type variable DR type channel

railQ »►
raijl
rail2

railO

raill
4 ack

Figure 9 : hardware implementation of variable Ctrl: MR[3] and channel E : DR.

4.2. Communication protocols
The 4-phase handshaking protocol is chosen for implementing inter-process communications. Figure
10 illustrates a data transfer along channel E as it is declared in the CHP program of figure 3.

Figure 10 : 4-phase handshaking protocol: transfer of value zero on channel E

Initially, railO and raill are both zero and the acknowledge signal "ack" is one. In the first phase, the
event on "railO" indicates that a zero is ready in channel "E". In response to this transfer request, phase
2 acknowledges the data by falling down signal "ack". Phase 3 and 4 are necessary to return the
signals back to their initial values. A read action from channel "E" using this communication protocol
can be formally described using Petri Nets as shown in Figure 11. This representation is commonly
called a "handshaking expansion" [Mar90].

Tl

T2

E_railO=l or E_raill=l

X-railO := E_railO
X_raill := E_raill
E_ack <= '0'

E_railO=0 and E_raill=0

X-railO := E_raiIO
X_raill := E.raill
E ack <= •!•

Figure 11 : Petri Net description of a read action on channel "E".
E ? X : with E and x of type DR (Figure 3).

4.3. Synthesis

Generating a gate net-list from the Petri Nets is a difficult problem that is beyond the scope of this
paper. The first step of the synthesis process consists in expanding all the communication actions
associated to the places of the Petri Net. This is done according to the chosen protocol as illustrated in
Figure 11 for a read action. Similar expansions are defined for write actions. Then, all the instructions
and guards associated to places and transitions, and represented by DFG constructs, are translated into
gates. Finally, the gate net-list is generated from the expanded Petri Net and the synthesized DFG's.
The circuit obtained for the Selector is described in Figure 12. Gates denoted "C" are Muller C
elements. Gates denoted "Cr" are Muller C elements with reset.

C_ack C_2, C_l, C_0

Figure 12 : Gate circuit of the Selector.

5. Verification

Verifying the correctness of the delay-insensitive circuits involves two steps: validation of the initial
specification and checking the correctness of the synthesized circuit.
In the first step we validate the initial specification of tiie asynchronous circuit, by constructing a
finite-state machine description in the VHDL language. This FSM corresponds to the Petri net
representation. After modeling the circuit environment, the resulting VHDL is checked by applying
model-checking tools.
The second step verifies the preservation of the logical properties of the asynchronous circuit after
synthesis, with regard to the properties checked on the initial specification.

5.1 Petri nets as finite-states machines

The CHP specification is translated into a safe Petri net. We formalize such a Petri net as a quadruple
I=<S, T, F, Mo>, where

(i) S and T are finite, disjoint, nonempty sets of places and transitions,
(ii) F c (SxT) u (TxS) is a flow relation,
(iii) Mo : S -> Bool is the initial marking.

The data-flow graph part of the CHP translation is associated to the Petri net places; in particular,
communication actions are linked to places. The internal control flow and the synchronization of the
communications are modeled by the guards associated with the Petri net transitions. Each place is
represented as a Boolean state-holding object and each marking as a min-term on these objects. This
allows a direct translation of the Petri net as a finite-state machine, where the marking represents the
global state of the system. Firing the enabled transition t at a marking M produces a new marking M'
constructed by setting all input places of t to 0 and all output places to 1. Actions are attached to places
and conditions are attached to transitions. Places with communication actions have to be expanded,
according to the selected protocol.

5.2 Translation of the Petri net to a verifiable model

In order to benefit from existing industrial tools, and fit in the design flow, we built a prototype which
translates the Petri net representation into a register transfer level, behavioral VHDL model suited for
formal verification (i.e. compliant to the 1076.6 standard). The simulation-oriented behavioral VHDL
model generated in the TAST flow (Figure 1) contains timing and attribute directives which are
essential to follow the propagation of the signals, but make this model improper as an input to model
checking tools. Ignoring or removing all delays alters the behavior of the model. The trick consists in
replacing each unit delay by a tick of a fictitious clock, thus making visible the "delta" delay of a
purely behavioral, non-timed, state transition model.

The translation of the CHP COMPONENT interface is straightforward. All the internally declared
variables and Petri net places are made VHDL signals, which guarantees that all state transitions take
at least one step. The overall Petri net for a component is translated as a single process synchronized
by the fictitious clock, and not as a set of guarded blocks as in [AB098]. The full process is executed,
and all active transitions are fired, at each step.

a) Algorithm

Input: Petri Net

Translation of declaration part
Declare the variable according to its type and (or) its parameters (Base and Digit).

Browse the global Petri net (Places and transitions)
IF (place Pi) Then

10

Associate a signal Pi to the place;
IF (Place is atomic)

Add : if Pi tiien action(Pi),... end if;
— action(Pi): Actions associated to the place Pi.

else - The place expresses a communication.
Put_Com 0;

ELSIF (transition Ti) Then
Add:

If (And[cond(Ti), placesJn(Ti)])
— cond(Ti) Condition associated to the transition Ti.
places_in(Ti) = false ; -- places_in(Ti) .-Input places.
places_OUt(Ti) = true ; - places_out(Ti) .-Output places

end if;
End IF
End of browsing.

Output: VHDL program.

Put com 0
Implements the communication actions, Read? or Write!, by insertion of the corresponding Petri Net
in global Petri Net.

b) Translation of communications

The communication actions are implemented with the handshake protocol.

Translation of Read : (C ?ctrl)

CHP declaration:
C : IN MR[3][1];
variable Ctrl: MR[3][1];

Translation into VHDL:
C : IN bit_vector(2 downto 0);
C_ack : OUT bit; -- Acknowledgement
signal Ctrl: bit_vector(2 downto 0);

Translation of: Write (Six)

CHP declaration:
S1,S2:0UTDR
variable x: DR;

Translation into VHDL :
S : OUT bit_vector(1 downto 0);
S_ack: IN bit; -- Acknowledgement
signal x : bit_vector(1 downto 0);

© C ? Ctrl

0 Six

((C="001" OrC="0]0";
or rzi'MOO'"*

Ctrl <= C ;
C_ack <= '0';
C= "000"

C_ack <= '1';

(T) S <= X ;

 S_ack = '0'

(G^ S <= "00";

-S_ack = 'r

c) Application to the selector example

The automatic translation of the selector of Figure 3 reads as follows, where some many similar
statements and line-feed characters have been manually deleted for space reasons. Comments are also
manually added.

11

entity EX11_Ent is
poi1(C : in bit_vector(2 downto 0);

E : in bit_vector(1 downto 0);
S1 : out bit_vector(1 downto 0); S2 : out bit_vector(1 downto 0);
C_a:outbit; E_a:outbit;
S1_a : in bit; S2_a : in bit;
elk, rst: in bit);

endEX11_Ent;

architecture EX11_a of EX11_Ent is
signal EX11_MAIN_X : bit_vector(1 downto 0);
signal EX11_MAIN_CTRL : bit_vector(2 downto 0);
signal Pi, PO, P9, P7, P8, PI, P5, P6, P2, P3, P4, POJ, P0_2, P7_1, P7_2,

P8_1, P8_2, P5_1, P5_2, P6_1, P6_2, P2_1, P2_2, P3_1, P3_2, P4_1, P4_2: boolean;
begin
process(clk, rst)
begin
if (rst='0') then -- initialization at reset

S1 <="00"; S2 <="00"; C_a <= '1'; E_a <= '1'; Pi <= true;
elsif clk'event and clk='1' then -- fictitious clock edge
if PS then S1 <= EX11_MAIN_X; end if; -- start of write action at place P8

-- same for P6, P3, P4
if P7_1 then EX11_MAIN_X <= E; E_a <= '0'; end if; -- start of read action at place P7
if P7_2 then E_a <= '1'; end if; -- acknowledge hand-shake at expansion of P7
if (P7_2) then P8 <= true; P7_2 <= false; end if; -- Transition T13
if P8_1 then SI <="00"; end if; ^ .^ ^^ ^ ^ _^
if ((EX11_MAIN_CTRL = "001") and P9) then P7 <= true; P9 <= false; end if; --OR branch at P9
if ((EX11_MAIN_CTRL = "010") and P9) then P5 <= true; P9 <= false; end if;
if ({EX11_MAIN_CTRL = "100") and P9) then P2 <= true; P9 <= false; end if;
if ((E="00") and P7J) then P7_2 <= true; P7_1 <= false; end if;
if ((S1_a='0') and P8) then P8_1 <= true; P8 <= false; end if;
if ((S1_a='1') and P8_1) then P8_2 <= true; P8_1 <= false; end if;
... ~ same for all other places and transitions
end if;
end process;
endEX11_a; _^ -

5.3 Verifying the asynchronous synthesis

Along the various synthesis steps, an erroneous procedure can produce an incorrect circuit description.
Therefore, it is useful to perform verification after obtaining a synthesized circuit.
The circuit obtained after synthesis cannot be proven equivalent to its specification, because the
synthesis process introduces optimization techniques and pipelines; thus the order of actions is not
necessarily preserved. As a matter of fact, while the VHDL model for the specification is a single
process per CHP process, the synthesized circuit is composed of many concurrent processes. The
formal verification can only hope to prove that the essential safety properties that hold for the initial
specification are preserved after synthesis.

The same problem that was raised for the specification validation is again encountered: the VHDL
simulation model of the synthesized circuits does not conform to the standard verifiable VHDL subset.
The asynchronous synthesis tool is based on a Ubrary that has to be adapted:

- Muller-C elements contain delays and transparent latches; we changed them into flip-flops,
introducing a fictitious clock, as in section 5.2
All types are transformed into Boolean and Bit.

Figure 13 below gives the transformation of one library component.

12

entity MULLER2_R is
port (resetb : in STD_ULOGIC;

S: out STD_ULOGIC;
A, B : in STD_ULOGiC);

end IV1ULLER2_R;

arciiltecture behaviour of MULLER2_R is
signal s_s: STD_ULOGIC;

begin

S<= s_s;

, s_s <= '0' after 1 ns when resetb = '0' else
j '1' after 1 ns when a='1' and B='1' else
I '0' after 1 ns when a='0' and b='0' else

s_s;

end behaviour

entity MULLER2_R is
port (resetb, oik : in bit;

S : out bit;
A, B : in bit);

end MULLER2_R;

architecture behaviour of MULLER2_R is
signal s_s : bit;
begin

S<= s_s;
process
begin

wait until elk ='1';
if resetb = '0' then s_s <= '0';
elsif a='1' and B='1' then s_s <= '1';
elsif a='0' and b='0' then s_s <= '0';
end if;

end process;
end behaviour;

Figure 13: VHDL models of a Muller-C gate for simulation and for formal verification

5.4 Environment modeling

CAck

E.Actc

Sl(l)
S1(0)

SlAck

Selector

S2_Ack

nd='l'&
E ack='Ol

Output_Env /

S_ack<='0' ^JtBK

nd=V&f^^ \ nd='l'&
S_req='0'\ j S_req='I

S..J0
S_req

^S aqk
.nd ►

^

Figure 14: Modeling correctness assumptions on the environment

In order to obtain a correct behavior, a set of environment assumptions must be associated to each
communication channel. For a given conununication channel, we must ensure that each input wire
behavior is comphant to the protocol implemented by the channel. All communication channels
behave according to a four-phase communication protocol. Following the direction of the request
signal attached to a channel, we distinguish between master channels (the system sends the request)
and slave channels (the system receives the request). Thus, a dual behavior must be defined for each

13

communication channel. For master channels, the dual behavior must receive the request and send a
validate within a finite amount of time. Then, it waits until the request falls and deactivates the
validate within a finite amount of time. The dual behavior of a slave channel must initiate a
transaction, by non-deterministically rising the request signal. The remaining behavior is obtained
from the master dual behavior, by exchanging the roles of the request and validate signals.
A dual behavior can be modeled as a non-deterministic description, which is plugged to each channel.
A fairness condition must be associated to each dual instance, in order to express the fact that it always
reacts within a finite delay.
It is also possible to express a dual behavior as a set of assumptions written in temporal logic.
Figure 14 displays the composition of a system with the dual behaviors attached to each
communication channel. Wire nd is a pseudo-input signals used to model non-determinism.

5.5 Application to the selector example

In the case of the selector example, the environment has been described by a set of temporal formulas,
and the verification was performed using Formal Check.

Input channel constraint:
C_Envl

After PI = True
Eventually (C = x "1" or C = x "2" or C = x "4") and PI = True

Meanins: Each time place PI is active, an incoming control request will eventually occur.

C_Env2
After C_ack = 0
Eventually C = x "0"

Meanins: Each time the request is acknowledged (C_ack = 0), it will eventually return to zero (C = x
"0").

Stable_C
After C = X "1" or C = X "2" or C = x "4"
Always C = stable
Unless C_ack = 0

Meanins: A request is stable until it is acknowledged

Output Channel Constraints
Sl_Envl

After Sl(l)=lor S1(0)=1
Eventually S l_ack = 0

Meanins: After a request on S (Sl(l) = 1 or S1(0) = 1), an acknowledgement will eventually be
received (Sl_ack = 0).

Sl_Env2
After Sl=x"0"
Eventually Sl_ack=l

Meanins: After the write transaction on channel S is finished (S = x "0"), the acknowledgement will
eventually be deactivated (S_ack =1).

The ports (E and S2) constraints are similar to the previous constraints (C and SI).

Some verified properties
The expressed properties correspond generally to the Petri net branches, i.e. the reachabihty of certain
places or Transitions by following a given path. Or they are used to express input-output relationships,
as in our example. The characteristic behavior of the selector is described by the three properties Al to

14

A3 below. These same properties are verified on the circuit specification and on the synthesized
circuit.
Meaning of property Al: If place POl is active and an incoming request C = x"l" arrives, then a write
will eventually occur on SI.

Al) After POl = True and C = x "1"
Eventually : Sl(l) = 1 or S1(0) = 1

A2) After POl = True and C = x "2"
Eventually : S2(l) = 1 or S2(0) = 1

A3) After : POl = True and C = x "4"
Eventually : (Sl(l) = 1 or S1(0) = 1) and

(S2(l) = 1 or S2(0) = 1)

5.6 Handling combinational explosion

Our asynchronous verification approach applies the symbolic model checking technique to a Finite
State Machine interpretation of a CHP program. Obviously, the verification of large descriptions will
eventually face combinational explosion. Two main directions need to be explored in order to handle
this problem. On the one hand, it is important to ensure that the FSM underlying model associated to a
CHP program does not contain irrelevant states. Currently, a FSM state is associated to each possible
Petri Net place marking. We are aware that diis representation is quite expensive, due to the state
encoding which associates one state variable to each place. On the other hand, a verification strategy is
required, which exploits the characteristics (symmetry, control and data path, etc.) of particular classes
of designs, such as the asynchronous arbiters.

Refining the state machine model
A first improvement to our method consists in associating
to the initial PN a FSM model with a more compact state
encoding. For instance, states should be represented as
values over an enumerated data type. Moreover, the FSM
states and transitions should match the PN places and
transitions. This correspondence is not always
straightforward. "Split - join" (SJ) parallel execution
constructions need special processing: generate one
separate PN for each parallel branch, as well as the re-
synchronization "glue" which marks the end of the
parallel execution. Figure 15 illustrates this
transformation. The parallel branches are executed as
soon as place a is active and transition Tl is true. Each
parallel branch makes a signal assignment (S1//S3) and
waits for an external event to occur (Reql = 1//Req2 = 1)
before making a second assignment (S2//S4).
By successive application of this transformation, we
obtain a collection of concurrent PN's which are free of
parallel execution statements. Since only one place at a time
may hold value 1 in each concurrent PN, one unsigned signal
per concurrent PN can hold the number of the active place.

However, further simplifications are still possible on the resulting representation. Petri Nets allow the
simultaneous use of two modeling levels in a natural way: sequences of local computations can be
mixed with operations that imply waiting for an external event. Moreover, infinite execution paths that
do not contain a wait for an external event are prohibited. Thus, the acmal evolution of a PN is only

X.T1 and a

^jS3 <= exp3

-|-Req2 = l

jS4 <= exp4

J_sp

Figure 15 "split join
construct transformation

15

S <= exp S <= exp2

triggered by external events. Any sequence of local computations performed between two external
events can be considered as part of the same place, which only records their result. Hence, it is useful
to collapse all sequences of places, which only implement local computations. Such sequences are
characterized as follows: simple actions like assignments are associated to places; conditions are
associated to transitions; one transition may fire as soon as its incoming place is active and its
associated condition true. Figures 16a, b and c present a few Petri Net transformation patterns, which
perform simplifications according to this criterion. We note them Sa, Sb and Sc. When a transition is a
part of a conditional statement, if at least one conditional branch is always true (for instance, they test
condition C and not C), one transition occurs inmiediately (Figure 16a). Parallel and sequential
assignments may also be regrouped inside the same place (Figures 16b and c).
The global simplification procedure consists in
applying rules Sa and Sc on each appropriate PN
construction.
Before applying transformations SJ (Figure 15) or
Sb on a parallel construct, a preliminary analysis
must determine whether its parallel branches
implement any waiting on external events. This
analysis performs a recursive coloring of each
parallel PN construct:

each transition is colored if it waits for an
external event;

- each parallel structure is colored if its
branches contain colored transitions or
colored parallel structures.

Transformation SJ must be recursively applied on
all colored constructs. Uncolored constructs are
treated by transformation Sb.
The FSM model obtained consists of several
concurrent state machines that can be represented
following a usual coding style. This
simplification technique brings two major
improvements:

- The resulting FSM state encoding relies on state
enumeration. Our initial implementation
associates one state variable to each PN place. For a net containing N places, N state variables
are needed. Concurrent FSMs state encoding would only need logzN state variables;

- Irrelevant PN places and transitions (if any) can be suppressed.

SI <=cxpl cxpl

SI <=expl

SI <=expl
' S2 <= exp2

Figure 16 - PN transformation patterns

Formal verification strategy
The example of Figure 8 implements the selection between incoming channels. Once a channel is
selected its data is read and sent through an output channel. This sequence is repeated each time a new
command is received. We call it a transaction. Note that a transaction cannot influence the execution
of a subsequent transaction. Hence, we may simply focus on writing correctness criteria for a single
transaction. According to the value of the control word Ctrl, the arbiter follows a separate execution
path. We distinguish 3 independent execution scenarios (corresponding to Ctrl = 0, 1, 2). Hence, each
property can be split into three proof sub-goals, one for each execution scenario, following two steps:

- abstracting away the logic driving the variable Ctrl, so that it becomes an artificial primary
input;

- writing a property for each execution scenario, by constraining Ctrl to the corresponding
constant value.

If all sub-goals of a property pass, then we may consider that the initial property is true.
This strategy seems adequate for this particular class of designs. It allows important simplifications in
the model representation, as each sub-goal constrains Ctrl to a constant value, which allows important
simplifications of the FSM representation.

16

6. Related Works

The verification of asynchronous circuits may follow two important directions, according to the
asynchronous design approach: untimed (delay insensitive) [Roi97], or timed design. It is well known
that the verification of timed systems faces serious complexity problems.
A particular interest has been shown for the development of asynchronous specification methods. The
use of concurrent processes for specifying an asynchronous behavior appears to be adequate for most
specification problems. Based on this approach, two main directions have been explored: language-
based and graph-based asynchronous specification.
Synthesis methods for language-based specifications directly translate a program into a circuit. In
[Mar90], the specification program is translated into a circuit by using a series of semantic preserving
transformations. Graph-based specifications are used at a conceptual level lower than language based
methods. This approach is widely used [Roi97, McM92] together with the Petri net or State Transition
Graphs formalisms.
Asynchronous verification methods have been developed following these design approaches. Early
works on the formal validation of asynchronous designs include experiments with CIRCAL to model
micro-pipe lines, and evaluate correctness and performance properties on them [CMOO]. This approach
doesn't make use of temporal logic, but models both the system and its properties as processes and
constructs the parallel composition of the implementation and property processes. The result is
compared to the initial system modehng by using an equivalence checking procedure. If the proof
succeeds, the system satisfies the property. This methodology has been used to prove the correctness
of two four-phase asynchronous micro-pipelines. [Cla99] presents two semantic models, for the formal
verification of reactive systems; they are based on simultaneous or interleaving approaches. It is
argued that the interleaving model is more adequate for modeling and verifying asynchronous
behaviors. The verification uses special partial order reduction techniques [BNOl] in order to handle
combinational explosion. In [RC96] a formal verification approach is proposed, in which both circuit
specification and circuit environment assumptions are modeled using Petri nets. A state encoding is
associated to this representation, which allows the application of HDD symbolic model checking
techniques. [YGOl] suggests the use of the LOTOS [EV89] specification language together with the
CADP [CADP] toolbox for asynchronous verification using model checking.
All these approaches are subject to state space explosion. A number of techniques, such as hierarchical
verification [RC95], modular verification [HaOl], abstraction techniques [ZMC99] and Petri net
unfolding, already deal with this problem. Like in the RTL systems, the verification of asynchronous
circuits heavily relies on the construction of a compact verifiable model as well as on using an
adequate verification strategy.

Conclusion

We have implemented an asynchronous circuit design flow based on CHP and VHDL, which includes
automatic synthesis, simulation and formal verification. A variety of small circuits (in the category of
multiplexors, arbiters, and the like) have been formally verified, by model checking techniques, using
pre-existing property checking tools that were initially not intended for asynchronous circuit
verification. However, the current prototype FSM generator is not efficient enough to serve the
verification of large circuits. Our on-going works concern the development of algorithms for
generating more compact state machines, and for finding verification strategies adapted to the known
characteristics of various circuit types, as discussed in the section devoted to the handling of
combinational explosion. The implementation of these algorithms will be progressively added to the
TAST environment for asynchronous circuit designs.

17

References

[AB098] R. Airiau, J-M Berge, V. Olive, J. Rouillard: VHDL - Langage, modelisation, synthese. 2"" edition,
Presse Polytechniques el Universitaires Romandes, 1998 (in French).

[ABROl] A. Abrial, J. Bouvier, M. Renaudin, P. Senn and P. Vivet A New Contactless Smart Card IC using
On-Chip Antenna and Asynchronous Microcontroller. Journal of Solid-State Circuits, vol. 36, 2001,
pp. 1101-1107.

[BE97] A. Bardsley, D. Edwards, Compiling the language Balsa to delay-insensitive hardware; in CD.
Kloos and E. Cerny, editors. Hardware description languages and their applications (CHDL), pp. 89-
91, April, 1997.

[Bel99] Wendy A. Belluomini. Algorithms for Synthesis and Verification of Timed Circuits and Systems.
PhD thesis. The university of Utah, Utah, 1999.

[BNOl] Robert Berks and Radu Negulescu. Partial-Order Correctness-Preserving of Delay-Insensitive
Circuits. Seventh International Symposium on Asynchronous Circuits and Systems, Salt Lake City,
Utah, 2001.

[Ber93] K. Van Berkel, Handshake Circuits - An Asynchronous Architecture for VLSI Programming.
Cambridge University Press, 1993, ISBN: 0-521-45254-6

[BKR91] K. van Berkel, J. Keyssels, M. Ronken, R. Saeijs and F. Chalij, The VLSI programming language
Tangram and its translation into handshakes circuits. Proceedings of the European Conference on
Design Automation, Amsterdam, pp. 384-389,1991.

[BS89] E. Brundvand, R. Sproull, Translating Concurrent Programs into Delay-Insensitive Circuits, in Proc.
ICCAD, pp.262-265, 1989.

[CADP] http://www.inrialpes.fr/vasy/cadp/

[Cla99] Edmund M. Clarke, Orna Grumberg and Doron A. Peled, Model Checking, The MIT Press,
Cambridge, Massachusetts, 1999.

[CMOO] Antonio Cerone, George Milne: A Methodology for the Formal Analysis of Asynchronous
Micropipelines. Proc. FMCAD 2000, LNCS N° 1954, Springer Veriag, pp.246-262

[EV89] P. H. J. van Eijk, C. A. Vissers, M. Diaz. The formal description technique LOTOS, Elsevier Science
Publishers B.V., 1989.

[Hoa78] C.A.R. Hoare, Communicating Sequential Processes. Communications of the ACM, vol. 8, pp. 666-
677, Aug 1978.

[Mar90] A.J. Martin, Programming in VLSI: From Communicating Processes to Delay-Insensitive Circuits
Developments, in Concurrency and Communication, edited by C.A.R. Hoare, Addison Wesley, pp.
1-64,1990.

[Mar93] A.J. Martin, Synthesis of Asynchronous VLSI Circuits. Internal Report, Caltech-CS-TR-93-28,
California Institute of Technology, Pasadena, 1993.

[McM92]Kenneh L. McMillan. Using unfolding to avoid the state explosion problem in the verification of
asynchronous circuits. In GG. V. Proc. International Workshop on computer Aided verification,
volume 663, pages 164-177. Spriger-Veriag, 1992.

[MLM97]Alain Martin, Andrew Lines, Rajit Manohar, Mika Nystroem, Paul Penzes, Robert Southworth, Uri
Cummings , Tak Kwan Lee: The Design of an Asynchronous MIPS R3000 Microprocessor. Proc. 17th
Conference on Advanced Research in VLSI, 164-181, IEEE Computer Society Press, 1997.

[MLM99]Rajit Manohar, Tak-Kwan Lee, and Alain J. Martin. Projection: A Synthesis Technique for
Concurrent Systems. Proc. 5th Int. Symposium on Advanced Research in Asynchronous Circuits and
Systems, April 1999.

[Neg98] Radu Negulescu. Process Spaces and Formal Verification of Asynchronous Circuits. Universite of
Waterioo, Ontario, Canada, 1998

[RCP95] Oriol Roig, Jordi Cortadella and Enric Pastor. Hierarchical Gate-level verification of Speed-
Independent Circuits. Polytechnic University ofCatalunya, Barcelona, 1996.

18

[RCP96] Oriol Roig, Jordi Cortadella and Enric Pastor. Verification of Asynchronous Circuits by BDD-based
Model Checking ofPetri Nets. Polytechnic University of Catalunya, Barcelona, 1996.

[Roi97] Oriol Roig i Mansill. Formal Verification and Testing of Asynchronous Circuits, Polytechnic
University of Catalunya, Barcelona, 1997.

[RVR99] M. Renaudin, P. Vivet, F. Robin ASPRO : an Asynchronous 16-Bit RISC Microprocessor with DSP
Capabilities. Proc. ESSCIRC'99, Duisburg, September 21-23, 1999.

[Sut89] I.E. Sutherland, Micro-pipelines. Communication of the ACM, Volume 32, N°6, June 1989.

[VB93] K. Van Berkel, Handshake Circuits - An Asynchronous Architecture for VLSI Programming.
Cambridge University Press, 1993.

[YG2001]M. Yoeli and A. Ginzburg, LOTOS-based Verification of Asynchronous Circuits, Technical Report,
Dept. of Computer Science, Technion, Hifa, 2001.

[ZhOl] Hao Zheng. Modular Synthesis and Verification of Timed Circuit Using Automatic Abstraction. PhD
thesis. The university of Utah, Utah, 2001.

[ZMC99]Hao Zheng, Eric Mercer, and Chris Meys. Automatic Abstraction for Verification of Timed Circuits
and Systems. PhD thesis. The university of Utah, Utah, 2001.

19

Issues in Multiprocessor Memory Consistency
Protocol Design and Verification

Ritwik Bhattacharya and Ganesh Gopalakrishnan *
School of Computing, University of Utah

{ritwik I ganesh}@cs,utah.edu

February 25, 2002

Abstract

Distributed shared memory (DSM) systems are central to our advancement
in terms of high-performance computing. The complexity of DSM protocol
design stems both from the complexity of the high-level notion of correctness—
conformance to a modern weak shared memory model—and the degree to which
these protocols are aggressive. Many similar issues are faced in the design of
related protocols such as in input/output subsystems. In this paper we provide
a glimpse of the complexity faced, and our work in progress in addressing these
issues through model-checking and synthesis using recently proposed challenge
problems to drive our research.

1 Introduction
The computer industry has consistently delivered increasing performance with
each new generation of processors. To sustain the current level of growth,
system design and verification complexity must be kept in check. Design and
verification complexity can be minimized through modular design principles
that allow design and verification results to be reused, and through provably
correct automation that allows verification to be done at higher levels. The
problem addressed in this paper is how to significantly elevate the level of
modularity and automation in the design of distributed shared memory (DSM)
systems, where the verification complexity has grown out of proportion with
raw transistor count.

The DSM discipline continues to be a dominant organizational paradigm
for computers. DSM machines may be as simple as a dual-processor desktop
computer or as sophisticated as the 512-node ASCI White [1] of Lawrence Liv-
ermore. The inherent verification complexity of these DSM machines will be
exacerbated by the fact that they will be integrated on single chips. Examples
of chip level multiprocessors include the IBM Power4 [2], the Compaq Piranha
[10], and the SUN microsystems MAJC 5200 [3]. These chips consist of ensem-
bles of processors, instruction and data level 1 (LI) caches, L2 caches, memory

*This work was supported by National Science Foundation Grants CCR-9987516 and CCR-
0081406

controllers, packet switchers, DSM protocol engines, and router hubs. For ex-
ample, the Piranha has all this functionality available within a single 100+
million transistor die. All these processors face a common set of issues when it
comes to their DSM protocol design:

• Given the growing computation to communication delays, ownership mi-
grations and invalidations must be handled inexpensively.

• Given the finiteness of resources such as buffer locations, transaction iden-
tifiers, etc, deadlock avoidance and buffer reservation schemes must be

built into protocols.
• Given the ever widening gap between CPU speeds and memory system

speeds, read latencies must be hidden at every possible opportunity. In
particular, as many operations must be allowed to happen out of order,
implying that weak memory consistency models [8] be employed.

The above mentioned problems pertaining to DSM protocol design are, to a
large measure, shared by emerging I/O system standards such as 3GI0 [4],
Infiniband [38], as well as protocols used in networked embedded systems such
as Bluetooth [18]. While many implementation methods provide the ability to
correct mistakes late in the design cycle (software implementations of DSM pro-
tocol engines [11, 23], and software [24] or microcode [31, 10] implementations
of hardware DSM protocol engines, for example), the extent of error recovery
possible is limited, and the debugging costs are high.

In this paper, we report on our research in progress at the University of
Utah which is addressing some of the above issues. The overall goals of our
research are as follows. First, we aim to develop techniques that apply to real
industrial-scale protocols. Second, we aim to capture recurring design situations
as "idioms" and develop reusable verification or synthesis techniques. Last
but not least, we aim to have "brute force" verification techniques available
to designers so that they can deploy them on new designs that break past
patterns, while a formal understanding is being obtained for them. In this
paper, we present our specific efforts to achieve the above goals:

• We briefly summarize some of the issues that make DSM protocols com-
plex. To shed more light on these issues, we examine the Wildfire [26]

protocol in some detail.
• We survey some of our past efforts in capturing design patterns and

setting up a derivational-style synthesis process. We provide a prelim-
inary evaluation of the success of this approach on the Wildfire protocol.
This preliminary evaluation reveals how far we can go with respect to an
industrial-scale protocol, and what remains to be done.

• We summarize our efforts so far in using "brute force" model-checking,
and present our plans to make this process more efficient.

In the remainder of this section, we review some basic terminology and
briefly survey related work. In Section 2, we summarize some of the general
difficulties of DSM protocol design, and specific issues that come up in the
Wildfire protocol. In Section 3, we present the approaches we have tried in the
past, as well as plan to try in the near future. Section 4 concludes the paper.

Basic Terminology

DSM protocols have one purpose: manage the ownership of cache fines so that
maximal concurrency of access is permitted, and the values returned by the
reads are according to the desired shared memory model [8]. To understand

shared memory models, consider a simple example. In a multiprocessor, a pro-
gram write (A, 1); read(B) running on processor PI and another program
write (B, 2); read (A) running on processor P2 interleave, producing different
execution results for the read depending on how weak the memory model is:
under a strong model such as sequential consistency, one of the reads must
return^either 1 or 2, while in a weak model such as Total Store Ordering [39],
both the reads can return 0. To drive home the connection between memory
models and synchronization code, consider one simple example, namely Peter-
son's algorithm for mutual exclusion [35]. This mutual exclusion protocol fails
to work under TSO, but works under sequential consistency.

In general, modern weak shared memory models are far more intricate than
either sequential consistency or cache coherence. They support ordinary- as
well as special reads and writes that obey different ordering properties. Fur-
thermore, these orderings depend on which address locations - coherent, non-
coherent, or I/O - these reads and writes fall on. While the weak ordering rules
impose a burden on writers of synchronization libraries, they provide consid-
erably more opportunities for compiler writers and hardware designers to gain
performance through re-orderings.

The correctness problem that we allude to in this paper is one of showing
that all executions generated by a DSM multiprocessor for any given concurrent
program are also allowed by the shared memory consistency model. This goes
far beyond the scope of what is traditionally known as "cache coherence verifi-
cation" where the correctness is only with respect to a single address appearing
coherent (consistent) for all processors. In this sense, both sequential consis-
tency and TSO obey coherence; however, as the Peterson protocol example
shows, they are not equivalent shared memory consistency protocols.

Related Work

The area of shared memory consistency models is vast. We do not attempt a
survey; for details, please see [8, 5]. In [19], Grahn studied many contemporary
DSM protocols in a unified setting. He also compared the implementation
details of achieving synchronization. The use of formal operational models of
memory consistency to verify assembly code synchronization routines is studied
in [16]. In [34], several protocols, including Stanford FLASH [24, 20] are shown
to be sequentially consistent, using theorem proving. Additional related works
in specification and verification of DSM protocols include [29, 5, 14, 36, 7, 9].

2 Complexity of DSM protocols

2.1 General issues contributing to complexity

To provide a concrete context for our discussions, we now take-up one commonly
occurring design scenario from DSM protocol design: the 'three-way handoff'
scenario of handling a missed write at a processor, say PI. In this scenario,
processor PI requests the directory controller of a cache line for an exclusive
copy of the cache line before it can proceed with the write. The directory
controller, in turn, requests the current owner (another processor, say P2) of
the line to forward the fine directly to PI. Completely unawares, P2 may have
already decided to evict the line, which is in fiight in the form of a line relinquish

^We assume an initial memory value of 0 at all locations.

message towards the directory. In this case, the directory controller receives
an "unexpected" line relinquish from P2 when it was expecting a "forwarding
to PI done" acknowledgement. In most designs, the directory controller would
recover from such a state by giving priority to the cache controller's attempt
over its own attempt. Consequently the directory controller acts as if it has
been implicitly nackecP. It collects P2's relinquished line and hands it over to
PI. Over and above these correctness considerations, one must also take into
account the other crucial factors, such as the following:

• Message ordering properties of the interconnect medium: usually several
priority lanes are employed to allow messages to re-order, partly to im-
prove performance, and partly to avoid deadlocks. Each message above
must be sent on the 'correct' priority lane.

• Buffer capacities: Usually, before sending a request, a requester, X, must
reserve a spare location in its input queue to be able to receive an ac-
knowledgement from its requestee, Y. However, sometimes a single spare
location may not suffice, as the following scenario of'tail of buffer livelock'
illustrates. In this scenario, when the acknowledgement is outstanding,
another requester, Z, may send a request to X. This may happen precisely
when Y is about to respond. Since the only available buflfer slot is oc-
cupied by Z's request, X is forced to send back Y's acknowledgement. It
then examines Z's request which, it usually cannot process, as X is "in
the middle of a request itself." X, thereby, ends up naching Z's request
also. This scenario can repeat indefinitely.

• Respect the memory ordering semantics: The above protocol actions de-
scribe how coherence - strong ordering with respect to a single cache-line
- is attempted to be maintained. It is unclear whether the ordering con-
straints for multiple addresses as dictated by sequential consistency or
weaker memory models are being met.

The Wildfire protocol involves virtually all the above issues plus some, as de-

scribed in the next section.

2.2 Additional complexities of the Wildfire protocol

We first describe briefly the Alpha memory model and the Wildfire cache co-
herence protocol, which we are using as a driving example in our research. We
then give some example scenarios that show the complexity of the protocol.

2.2.1 The Alpha Memory Model

In the Alpha memory model we consider [26], a processor can issue five different
kinds of memory requests, which are named Rd, Wr, LL, SC and MB. A Rd is a
read of a memory address, and the memory responds with a data value. A Wr is
a write to a memory address. The memory responds with an acknowledgement
that the write has been performed. An LL is a 'Load Locked.' This is a read
of a memory address that 'locks' the address for the processor, unlocking any
other address that might be locked for that processor. The memory responds
with a data value. An SC is a 'Store Conditional.' This is a conditional write
of a memory address which succeeds if the specified address is locked, and fails
otherwise. If it fails, it does not update memory. An SC always (successful or

^nack stands for negative acknowledgement.

not) unlocks any address that is locked by the processor. A memory address is
also unlocked when a different processor performs a Wr or a successful SC to
an address locked by the processor. The memory responds to an SC with an
acknowledgement indicating whether the request succeeded or not. An MB is a
'Memory Barrier.' Two requests from the same processor to the same address
must always be performed in the order in which they were requested. Two
requests to different addresses from the same processor must be performed in
the order they were requested if an MB request was issued after the first and
before the second. The memory does not respond to an MB. The source of a
memory operation is the most recent write to the memory address involved in
the operation (see ordering rules below).

The orderings that the Alpha memory model imposes on the above five
operations are as follows:

• A request rj precedes another request r2 if ri is the source of r2.
• ri precedes r2 if ri and r2 are requests from the same processor, ri pre-

cedes r2 in the request queue, and either at least one of them is an MB,
or they are requests to the same address.

• Writes and successful SCs to the same location that have issued responses
are totally ordered.

• LL's and successful SCs are properly paired, without intervening writes
by another processor to the same address.

2.2.2 The Wildfire Protocol

The Wildfire cache coherence protocol was designed to implement the Alpha
memory model. It models a NUMA shared memory system, and consists of a
network of processors and memory connected to local switches, which are all in
turn connected to a single global switch. An example is shown in Fig 1. The
global space of memory addresses is partitioned among the local switches, with
each address belonging to exactly one local switch, which is the home node for
that address. Each processor has a cache that contains local copies of some
addresses. Wildfire is a directory based cache coherence protocol where each
local switch maintains a directory with entries for each address that belongs to
it. Each entry has information on which processors currently have a copy of
that address in their local cache.

Processors communicate with each other and with local switches through
messages. If a processor needs to send a message to a local switch other than
the one it is attached to, it sends the message to its local switch, which relays
it to the global switch, which in turn relays it to the correct local switch.

Processors are connected to their local switch by two unidirectional queues.
The same is true for local switches and the global switch. Messages in the
queues are allowed to reorder, subject to certain constraints. All request and
control messages travel along this set of queues. There is also a separate network
of queues that connect processors directly to one another. These queues are
used only to send actual data values by the owner of an address.

An entry in the processor's cache is in one of the following states :

• Exclusive: This is the primary copy of the data. The processor can read
or write it.

• SharedClean: The copy is a secondary, read-only copy.
• SharedDirty: This is the primary copy of the data, but it is read-only (The

state was Exclusive, and then some other processor requested a read-only
copy).

GLOBAL
SWITCH

MEM
LOCAL

SWITCH
LOCAL
SWITCH MEM

PROCESSOR PROCESSOR PROCESSOR PROCESSOR

Figure 1: Example of a Wildfire multiprocessor system

• Invalid: The cache does not contain a copy of this address.

The state of a cache line changes as a result of the various requests that
processors issue, and the responses to those requests. As mentioned earlier,
these communications are carried out through messages. An indication of the
complexity of the protocol is that there are 13 different types of messages in
the protocol, and there can of course be multiple messages of each type at
any given time in the system. Completing a single memory operation (such
as a Wr or a Rd) can require exchanging as many as seven messages among
three different components of the system, all of which can be interleaved and
reordered with other messages in the system. There are many other subtleties
about the protocol that lead to its complexity, but are beyond the scope of this
paper. Please see the full Wildfire documentation at [26] for more information.

2.2.3 Scenarios of the Wildfire protocol

We now discuss some scenarios that illustrate the complexity of the Wildfire
protocol. First, we describe how Wildfire handles the situation described in
Section 2.1. A processor maintains multiple versions of the same cache line,
each with a possibly different data value. Thus, when a processor evicts a cache
line, it does not delete the version of the cache entry until an ack for the eviction
has been received. So when its evict message crosses over with the request from
the directory to forward the line, it can handle the forwarding request, since it
has kept the version around. This data is then directly sent to the requesting
processor via a separate 'fill channel.'

Our second scenario describes what is known as the shadow mode in the
Wildfire protocol. For this scenario, suppose that processors pi and ps and
address ai are on local switch Isi, and processors p2 and p4, and address 02
are on local switch /s2. Also, assume that pi has the primary copy of 02 in it's
cache, and similarly p2 has the primary copy of ai. Now, the following events
occur [26]:

- pi requests a copy of ai.

— Pi's request reaches Zsi, which sends a request towards p2 to forward the
data to pi, and updates it's directory entry for ai to record pi as the new
owner.

— p2 requests a copy of 02-

— p2's request reaches ls2, which sends a request towards pi to forward the
data to p2, and updates it's directory entry for 02 to record P2 as the new
owner.

— p3 requests a copy of ai.

— Pa's request reaches Isi, which directly puts a request to forward the data
in pi 's queue.

— p4 requests a copy of 02-
— p4's request reaches ls2, which directly puts a request to forward the data

in p2's queue.

— Lots of other unrelated messages enter the queues for pi and p2

— The forward request for pi to send the line 02 to p2 reaches Isi

— The forward request for p2 to send the line ai to pi reaches ls2

Now, the request for pi to forward the line ci to pa is at the head of pi's
queue, but it cannot handle it yet, since it does not have the line ai (though the
directory Isi thinks it does). Similarly, the request for p2 to forward the line
a2 to p4 is at the head of its queue, but p2 cannot handle it either, since it does
not have the line 02- The request for p2 to forward the line ai to pi is stuck
at ls2, since p2's queue is full with the other unrelated messages. Similarly, the
request for pi to forward the line 02 to p2 is stuck at Isi, since pi's queue is
full with the other unrelated messages too. We have now reached a deadlock,
essentially due to the fact that ps's (p4's) request for line oi (02) gets directly
inserted intopi's (p2's) queue.

This situation is avoided in Wildfire by the use of 'shadowing'. What this
says is that whenever an address that is owned by a directory is in the cache of
a processor not directly connected to that directory (local switch), all messages
related to that address must go through the global switch, even if both the
source and destination of a message are on the same local switch. In the above
situation, this condition will result in pa's (p4's) request for line ui (02) to be
routed through the global switch, ensuring that either pa's request for aj will
end up behind p2's request for 02 in pi's queue, or p4's request for 02 will end
up behind pi's request for ai in p2's queue, thus eliminating the deadlock.

It is nontrivial to prove that the above solution works in general, and actu-
ally involves proving that Wildfire satisfies the liveness property of the Alpha
memory model.

Hopefully, the above scenarios will serve to convince the reader that today's
memory consistency protocols are highly complex systems, and hence verifying
their correctness is commensurately hard.

3 Verification Effort
In this section, we describe our eff'orts at verifying the Wildfire protocol. We
discuss our attempts at using the TLC model-checker[25] (3.1), the Mnvcp sys-
tem [15] (3.2), and an experimental synthesis technique [30] (3.3).

3.1 Verification using TLC
Both the Alpha memory model specification and the Wildfire protocol are writ-
ten in TLA[27], which is a logic for specifying and reasoning about concurrent
systems. Hence, our initial attempt to verify the Wildfire protocol focussed
on using TLC, which is an explicit state enumeration based model checker for
specifications written in TLA. We soon realized, however, that TLC would not
be adequate, for two reasons. For technical reasons that are beyond the scope
of this paper, TLC cannot handle specifications that are not machine closed,
which is the case with the Alpha specification. A specification is said to be
machine closed if it's hveness property does not introduce additional safety
properties into the system [6]. The second, practical reason is that TLC is
written in Java, making it extremely slow. The Wildfire model was allowed to
run for seven days, and TLC had only explored around 15 million states, for
a rate of around 1400 states/minute. This was unacceptable for any practical
verification to be done. The TLC verification run did find a 'bug', but that
turned out to be a bug in TLC itself, and not the protocol. This was reported
to the authors of TLC, who have said that TLC will be fixed to remove this
bug. This bug has to do with the way TLC handles conjunctions.

3.2 Verification using Munp
We next decided to code up the Wildfire protocol in a different modeling lan-
guage, so we could carry out the verification with another tool. We debated on
whether to use a symbolic state representation based tool such as SMV [28],
or an explicit state enumeration based tool like Mury? or Spin. SMV was ruled
out as its input language is too low level for coding the protocol at the required
level of abstraction. Also, based on the experience of Hu [22], it seemed Ukely
that there would be a considerable blow-up in the BDD size. In the end, we
decided to go with Murv?, as it has a reasonably expressive input language, and
is also quite efficient. The Munp coding effort took about a month. During
this time [37] adapted an existing parallel version of Muvip to run using MPI
libraries, so it could be run on a network testbed at the University of Utah
which provides up to 172 networked workstations to run experiments on. The
sequential version of Muvfp soon consumed all the memory resources of the
largest single machine at our disposal, which is an SGI with 4 GB of RAM.
We then started a run of the parallel version on the network testbed. Each
machine in the testbed has 512 MB of RAM. Our initial experiment with 15
such nodes explored about 3.3 million states in 4 minutes before crashing the
system. This crash is thought to be due to a bug either in the MPI libraries, or
the port of Munp to MPI, and is being investigated. But the important lesson
we learned is that even for the small instantiation of the problem we chose,
with two processors, one address, and queue sizes of three, the theoretical total
state space is around 48 million (using hashing of the state vector to 40 bits),
suggesting that for a realistic instantiation, the state space might be beyond
the capabilities of conventional model checking. This has lead us to explore a
completely different technique for deriving such protocols, which we discuss in

the next section.

3.3 DS]V[Protocol Synthesis
There have been very few attempts at developing formal approaches to DSM
protocol design that take higher level protocol specifications and generate effi-

Figure 2: Directory and Cache controller Protocols of Migratory Scheme

cient protocols. We call the higher level protocols atomic transaction protocols
and the lower level protocols split transaction protocols. In all the approaches
we have seen, it is assumed that protocol designers must take charge of creating
the split transaction protocols manually for obtaining maximally efficient imple-
mentations. However, this approach is highly error-prone. The main difficulty
is the huge semantic gap between shared memory models and split transac-
tion protocols. Protocol synthesis is feasible because the techniques employed
by designers for handling ownership transfers, performing invalidations, and
speculative protocol execution in real protocols tend to recur quite frequently.
Protocol synthesis will allow verification to be employed at a higher level of
protocol representation. This, in addition to reducing the state space, will ren-
der DSM protocol behavior semantically closer to human intuition, unlike in
today's approaches where the low level state-space mixes the important (e.g.,
synchronization completing) with the mundane (how one message overtakes
another inside a buffer).

Previous work in our group [30] has demonstrated the feasibility of protocol
refinement. We defined a formal refinement relation, and showed, using the
theorem prover PVS [32], that the protocols synthesized by our rules stand in
this relation with respect to the atomic transaction protocols. It was shown
there that the atomic transaction protocol for a two processor Avalanche system
[13] had only 54 states, whereas the spht transaction protocol had 23,000 states.
Since our aim is to do the verification on the atomic transaction protocol, this
has the potential to significantly reduce the state space. We briefly summarize
our past work in the next section.

3.3.1 A brief overview of protocol synthesis through refinement

We adopt the CSP notation of Hoare [21] and model ownership transfers as
atomic transaction steps (using the rendezvous construct of CSP). In Figure 2,
we illustrate such a protocol description. In this description, the ownership
of a cache line is managed under a migratory-style protocol: the line access
rights migrate from node to node. As a specific example, assume that there
are two cache controllers Cl and C2 executing a cache node protocol begin-
ning in state I (invalid), and one directory controller D executing the directory
protocol beginning in state F (the line is 'free'). When Cl suffers a cache miss
(the rw transition), it attains state Tl, and sends a request to the directory
controller. We show the act of sending this request through the rendezvous
statement h! req. This statement is jointly executed with the matching state-
ment r(i)?req of D. Note that we do not mention how this rendezvous is
realized. All that the specification writer needs to think about is that the state
of D and Cl (viewed as a pair) advances from (F,T1) to (T1,T2) atomically.
D then executes the r(j) !gr(data), granting the data and line ownership to

Cl. This again causes an atomic advancement of the state from (T1,T2) to
(E,V). Suppose C2 now suffers a miss, attains state Tl, and sends a request to
D. The joint moves of D and C2 will now be from (E,T1) to (II,T2), the state
where D is preparing to invalidate Cl (which is, recall, in state V). Then, D
and Cl execute the joint move (II,V) to (12,T4) to (13,1), completing the
invalidation of Cl. Then, D and C2 execute the joint move (13,T2) to (E,V),
where D now records the ownership of C2.

Notice that while D and C2 were in state (I1,T2), Cl could have decided
to autonomously evict the cache line, attaining state T3. Unfortunately, if D
now initiates the rendezvous r (o)! inv, instead of a matching action occurring,
what occurs is a rendezvous initiation by Cl for another statement, namely
h!LR(data). This is quite akin to situations that have been faced by past re-
searchers when they studied the problem of implementing CSP on a distributed
platform using generalized input- and output guards [12]. Unfortunately, their
solutions are too "heavy weight" for our purposes. Our solution to handle the
above "apparent deadlock" situation is to somehow make D aware that it has
been nached (in our static priority scheme, it is D that always backs-off in such
situations). We then make D bounce back to state II, and participate in the

LR rendezvous which can now succeed.

Synthesis into split transactions

Split transactions (handshakes) consist of asynchronous (non-blocking) sends
and receives. A rendezvous construct h!req is initiated through an asyn-
chronous send, denoted h! !req. The handshake completes when a reply mes-
sage h??req is received back. For simplicity, in our past work we disallowed
a cache controller process from having a generalized guard (input and output
actions present). In fact, if a cache controller process has an active rendezvous
(of the kind 'p!E'), then it must be the only guard in a communication state^.

Thus, the rendezvous of a cache controller must not fail - while that of the
directory controller can be nached. (This decision stems from what is really
practical: a directory controller can be nacked; however, if a CPU misses on
a cache line, and its cache controller sends a request for that line, there is no
option but to supply that line.) We also imposed the discipline that a cache
controller may not communicate directly with another cache controller. While
this decision simplified our algorithm, it prevented certain advanced types of
refinements to be elaborated shortly. We will revise these decisions in our future

work.
A brief overview of our synthesis procedure is as follows. The cache con-

troller is either in an 'internal' (non-communication) state or a communication
state ^. Assume that it is in the latter. It must then reserve a buffer location
to receive a reply, and then send out a request for rendezvous. If this request is
nacked (say, because of buS'er capacity running out at the directory controller),
it must retry its request. The directory controller, on the other hand, must
reserve two free locations before it initiates a rendezvous. The extra location
is to prevent the 'tail of buffer livelock' scenario illustrated earlier. It must try
to engage in one of the rendezvous allowed by its communication state. Un-
like a cache controller, a directory controller can be written with generalized
guards. It can try these guards in turn. Figure 3 illustrates the refined (split

^A communication state is one where one of the guards is a communication action.
^Notice that as in CSP 1978, we named processes directly and did not use channel names. We

may revise this decision in the present work.

10

...ni ^, 11-^ r(x)??msg/nack
r(i)??req r(i)! !gr(data)^-.r(j)??req --< [nack] >.^^ h!!LR(dala)^

r(o)!!ack

''rO)!!gr(data)

(~^^o)??LR(data)
V^ V^-- ' r(o)??ID(data)

Figure 3: Refined Directory and Cache controller Migratory Protocols

transaction) protocols of the directory and cache controllers. While space pre-
cludes a full explanation, the asynchronous handshaking and details of nack
handling are highlighted by this figure. We argued, using paper-and-pencil,
that our algorithm ensures forward progress. Our algorithm can also elegantly
handle the earher mentioned 'unexpected' situation' of P2 relinquishing a hne
concurrently with the directory controller requesting it.

We showed, using the PVS theorem prover [33], that the split transaction
protocol provides all (and only) those executions that are allowed by the atomic
transaction protocol. In other words, the sequence of completed rendezvous
in the implementation is one of the ones allowed by the specification, and
furthermore, all the ones in the specification are realized by the implementation.
Thus, if a designer writes code to performs cache- and directory update activities
around such as 'synchronization skeleton' at the atomic level, the same activities
will manifest at the spht transaction level. The biggest advantage of the split
transaction level is, of course, that it is implementablel The atomic transaction
level is easier to understand and verify, but cannot be implemented directly.

An Assessment

We applied the technique described in [30] by hand to the Wildfire protocol.
We found that if we had the following three synthesis rules in our algorithm,
we could have synthesized all high-level aspects of the Wildfire protocol:

— The three-way handoff scenario, as described above in Section 2.1.

— A scenario that stems from three-way handoff. In this scenario, P2 must
keep a copy of the cache line around, should the directory be allowed to
sending "forward" requests from other nodes towards P2. This capabil-
ity is, actually, necessary whenever three-way handoff is used because of
the arbitrary delay between when P2 relinquishes ownership to when the
directory becomes aware of that.

— A still more intricate scenario found in Wildfire. This scenario must be
supported only if the designer is (as in Wildfire) extremely aggressive,
and allows P2 to re-acquire as well as relinquish the very same cache
fine multiple times, while it is waiting for the directory to receive and
acknowledge its very first relinquish! (In Wildfire, this forces P2 to keep
multiple versions of the line - "one for itself" and the others for "forward
requests".)

These results have encouraged us to pursue the goal of protocol synthesis
further. We discuss our plans for enhancing current techniques, and other
future work, in the next section.

11

3.4 Future Work
We plan to attack the problem of verifying the correctness of DSM protocols
from two different directions. One approach will be to try and develop better
techniques for verifying existing split transaction protocols. Towards this end,
we are in the process of developing a partial order reduction algorithm to be
implemented in Murip. This will be a reformulation of the classical partial order
reduction algorithm [17], without the notion of processes. All implementations
we have seen use heuristics based on partitioning the transition relation based
on processes. We plan to use a different technique to partition the transition
relation. The advantage is that this technique can then be used on systems
that are modeled directly as transition systems, without any clear distinction
of processes. We also believe that in some cases, this may result in more partial
order reductions than in the classical algorithm.

Our other angle of attack is to further develop the idea of DSM protocol
synthesis, by adding rules to the synthesis algorithm that exploit re-orderings
permitted by the underlying memory model. This will result in more efficient
synthesized protocols, that will be competitive with hand-designed protocols.
Even if the synthesized protocols are not as efficient as the latter, the big advan-
tage will be that they can be designed quickly (and, we hope, automatically),
and verified more easily, since the synthesis algorithm has to be verified only
once, and then, whenever a protocol is synthesized, it will be correct by design,
as long as we verify the atomic transaction protocol separately.

4 Concluding Remarks
This paper reports work in progress in our group at the University of Utah
on distributed shared memory protocol verification. We report our specific
efforts relating to a recently proposed challenge problem by Lamport called
the Wildfire challenge [26]. We are very impressed that the bug seeded in this
protocol was recently discovered by one individual simply through inspection!
No other success, either using inspection or verification tools, has, hitherto been
reported. Even if one were to have luck verifying this particular protocol using
today's tools, the state of the art of designing and verifying such protocols is
nowhere close to being routine. Our long-term goals are to understand how
such protocols are created, and to base design on refinement, as in our group's
past work reported in [30]. Ultimately, we feel, the complexity of verification
must be addressed at design time.

References
[1] The ASCI White Computer http://www.llnl.gov/asci/.

[2] The IBM Power4 Microarchitecture
http://www-l.ibm.com/servers/eserver/pseries/hardware/whitepapers/power4.html.

[3] The Sun MAJC Microarchitecture http://www.sun.com/microelectronics/MAJC/.

[4] The 3GI0 Third-Generation Bus Specification
http://www.pcisig.com/news_room/3gio.

[5] 2001. MPV: Workshop on Specification and Verification of Shared Mem-
ory Systems, Austin, Texas, October 31, 2001 (workshop held prior to
FMCAD'2000).

12

[6] Martin Abadi and Leslie Lamport. The existence of refinement mappings.
Theoretical Computer Science, 82(2):253-284, 1991.

[7] Dennis Abts, David J. Lilja, and Steve Scott. Toward complexity-effective
verification: A case study of the Cray SV2 cache coherence protocol, 2000.

[8] Sarita V. Adve and Kourosh Gharachorloo. Shared memory consistency
models: A tutorial. Computer, 29(12):66-76, December 1996.

[9] Asgeir POT Eiriksson. The formal design of Im-gate ASICs. Formal Meth-
ods in Systems Design, 16(1), January 2000.

[10] L.A. Barroso, K. Gharachoroloo, R. McNamara, A. Nowatzyk, S. Qadeer,
B. Sano, S. Smith, R. Stets, and B. Verghese. Piranha: A scalable archi-
tecture based on single-chip multiprocessing. In 27th International Sym-
posium on Computer Architecture (ISCA), June 2000.

[11] J. K. Bennett, J. B. Carter, and W. Zwaenepoel. Munin: Shared memory
for distributed memory multiprocessors. Technical Report COMP TR89-
91, Dept. of Computer Science, Rice University, April 1989.

[12] G. N. Buckley and A. Silberschatz. An effective implementation for the
generalized input-output construct of CSP. ACM TOPLAS, 5(2):223-235,
April 1983.

[13] J. B. Carter, A. Davis, R. Kuramkote, C-C. Kuo, L. B. StoUer, and
M. Swanson. Avalanche: A communication and memory architecture for
scalable parallel computing. In Proc. of the Fifth Workshop on Scalable
Shared Memory Multiprocessors, June 1995.

[14] Anne Condon and Alan J. Hu. Automatable verification of sequential con-
sistency. In Symposium on Parallel Algorithms and Architectures (SPAA),
July 2001.

[15] D. L. Dill, A, J. Drexler, A. J. Hu, and C. H. Yang. Protocol verification
as a hardware design aid. pages 522-525, 1992.

[16] David L. Dill, Seungjoon Park, and Andreas Nowatzyk. Formal specifica-
tion of abstract memory models. In Gaetano Borriello and Carl Ebeling,
editors. Research on Integrated Systems, pages 38-52. MIT Press, 1993.

[17] Patrice Godefroid. Partial-order methods for the verification of concur-
rent systems: an approach to the state-explosion problem, volume 1032.
Springer-Verlag, New York, NY, USA, 1996.

[18] Torbjorn Grahm and Barry Clark. Soc integration of reusable basband
bluetooth ip. In Proceedings of the 2001 Design Automation Conference,
pages 256-261, 2001.

[19] Hakan Grahn. Evaluation of Design Alternatives for a Directory-Based
Cache Coherence Protocol in Shared-Memory Multiprocessors. PhD thesis,
Lund University, October 1995.

[20] S. Gupta. Stanford dash multiprocessor: the hardware and software. In
Proc. of Parallel Architectures and Languages Europe (PARLE'92), pages
802-805, June 1992.

[21] C. A. R. Hoare. Communicating sequential processes. CACM, 21(8):666-
677, 1978.

[22] Alan John Hu. Techniques for efficient formal verification using binary
decision diagrams. Technical Report CS-TR-95-1561, 1995.

13

[23] P. Keleher, S. Dwarkadas, A. L. Cox, and W. Zwaenepoel. T^eadmarks:
Distributed shared memory on standard workstations and operating sys-
tems. In Proc. of the Winter 1994 USENIX Conference, pages 115-131,

January 1994.

[24] J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni, K. Gharachorloo,
J. Chapin, D. Nakahira, J. Baxter, M. Horowitz, A. Gupta, M. Rosenblum,
and J. L. Hennessy. The Stanford flash multiprocessor. In Proc. of the 21th
Annual Int'l Symp. on Computer Architecture (ISCA'94), pages 302-313,

April 1994.

[25] L. Lamport. Specifying concurrent systems with tla, 1999.

[26] Leslie Lamport. The wildfire challenge problem.
http://research.microsoft.com/users/lamport/tla/wildfire-challenge.html.

[27] Leslie Lamport. The temporal logic of actions. ACM Transactions on
Programming Languages and Systems, 16(3):872-923, May 1994.

[28] Kenneth L. McMillan. Symbolic Model Checking. Kluwer Academic Press,

1993.

[29] Ratan Nalumasu, Rajnish Ghughal, Abdel Mokkedem, and Ganesh
Gopalakrishnan. The 'test model-checking' approach to the verification
of formal memory models of multiprocessors. In Alan J. Hu and Moshe Y.
Vardi, editors. Computer-Aided Verification, CAV '98, volume 1427 oiLec-
ture Notes in Computer Science, pages 464-476, Vancouver, BC, Canada,
June/July 1998. Springer-Verlag.

[30] Ratan Nalumasu and Ganesh Gopalakrishnan. Deriving efiicient cache co-
herence protocols through refinement. Formal Methods in System Design,
1998. To appear in a Special Issue on Unity. Dominique Mery and Beverley

Sanders (Editors).

[31] A. Nowatzyk, G. Aybay, M. Browne, E. Kelly, D. Lee, and M. Parkin.
The s3.mp scalable shared memory multiprocessor. In Proc. of the 27th
Hawaii Int'l Conf. on System Sciences (HICSS-27), volume I, pages 144-

153, January 1994.

[32] S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype verification
system. In Deepak Kapur, editor, 11th International Conference on Au-
tomated Deduction (CADE), volume 607 of Lecture Notes in Artificial In-

telligence. Springer-Verlag, 1992.

[33] Sam Owre, Natarajan Shankar, and John Rushby. Pvs: A prototype verifi-
cation system. In 11th International Conference on Automated Deduction
(CADE), Saratoga Springs, NY, pages 748-752, June 1992.

[34] Seungjoon Park. Computer Assisted Analysis of Multiprocessor Memory
Systems. PhD thesis, Stanford University, jun 1996. Department of Com-
puter Science.

[35] G. L. Peterson. Myths about the mutual exclusion problem. Information
Processing Letters, 12(3), June 1981.

[36] Shaz Qadeer. Verifying sequential consistency on shared-memory multi-
processors by model checking. Technical report, SRC, December 2001.
Research Report 176.

[37] Hemanthkumar Sivaraj. MPI port conducted in October 2001. Personal
Communication.

14

[38] Brian R. Smith. Breaking the I/O Bottleneck.
http://www.performancecomputing.com/features/OOOOside.shtml.

[39] David L. Weaver and Tom Germond. The SPARC Architecture Manual -
Version P. P T R Prentice-Hall, Englewood Cliffs, NJ 07632, USA, 1994.

15

Specifying and verifying fault-tolerant hardware

Scott Hazelhurst* Jean Arlat^

February 21, 2002

Abstract

Fault tolerant systems are an important class of system, often used in safety critical or highly available
applications. For these systems, as well as verifying the functional and timing properties we must
verify that the fault-tolerant mechanisms do protect the system in the ways expected.

This report proposes an integrated framework for specifying and verifying fault-tolerant systems:
functional, timing and fault tolerance properties.. The specification is given using a temporal logic,
TL, as a set of assertions of which describe the behaviour as well as the faults which should be
tolerated. The faults themselves are represented as trigger-action pairs: the trigger says when a fault
manifests itself, and the action says how the fault manifests itself.

The system being verified is represented as a finite state machine (FSM). The fault descriptions
are used to construct observer and saboteur FSMs, which when composed with the original FSM
allow a wide range of faults be modelled and fault tolerance properties verified. The verification is
done using a model checking algorithm called symbolic trajectory evaluation. This framework has
been implemented in the VossProver verification system, and a case study has been carried out, with
promising experimental results.

1 Introduction

The importance of building fault-tolerant systems for safety-critical applications has been recognised
for well over 30 years. Given their purpose, it is especially important to validate that they do have
their desired or claimed fault tolerance properties. Some very successful evaluation schemes have been
proposed, typically using schemes of fault-injection coupled with testing (see [11] for a discussion).
Although testing-based techniques are successful, there are some limitations to these approaches: fault
tolerance properties are often expressed informally; and just as exhaustively testing functional properties
of a system is an intractable problem, so is testing fault tolerance properties. Though a high degree
of confidence can be obtained using the appropriate testing methods, this is highly computationally
intensive, and there must still be uncertainty about the result.

In other domains, formal methods have been proposed as a solution to these problems, and especially
with hardware verification a large degree of success has been obtained [13]. Although formal methods
have also been used in verifying fault-tolerant designs or specifications (e.g. [3, 14, 15, 18]) formal
methods have not had wide-spread use in verifying fault-tolerant systems, especially verifying designs at
a relatively low-level of abstraction.

This report explores the use of formal methods in specifying and verifying fault-tolerant hardware
systems. The key questions explored are:

• What is a suitable language for specifying the desired fault tolerance properties?

• How can formal verification techniques be used for verifying these properties?

'School of Computer Science, University of the Witwatersrand, Johannesburg, South Africa, scott@cs.wits.ac.za
^ILaboratoire d'Analyse et d'Architecture des Systemes, Centre National de la Recherche Scientifique, Toulouse, France,

arlat@laas.fr

This report proposes a method of expressing fault tolerance (FT) properties of interest, and a comple-
mentary method of verifying these properties. Using these methods, the following design methodology
is proposed. (1) The system is formally specified — both nominal and FT behaviour (2) The basic non-
fault-tolerant design is verified (where this design can be clearly distinguished from the fault-tolerant
one). (3) The third phase is the verification of the fault-tolerant design without the presence of faults
(to show that the introduction of fault tolerance has not introduced errors). (4) The final phase is the
verification of the circuit in presence of faults to show that the fault tolerance mechanisms work. The
main focus of this paper is the specification and verification of FT properties.

Outline ■ Section 2 presents the basic framework for specification and verification (based on tempo-
ral logic and model-checking). Section 3 presents a method of specifying and verifying fault tolerance
properties. Section 4 presents a case study to evaluate the approach and identify its strengths and weak-
nesses. Section 5 concludes and suggests appropriate future research.

2 Framework for specification and verification

The choice of a specification language is difficult because there are many competing requirements of
both a technical and human origin. Natural language and first-order logic are both expressive, but neither
are ideal. Natural language specifications are imprecise, and first-order logic specifications may quickly
become too detailed to be understandable. . .

This paper explores the use of a temporal logic for expressing FT properties. The major motivation
for this is that temporal logics have proved very useful for specifying functional and timmg properties of
systems, so if a temporal logic can be used for expressing FT properties as well, a uniform framework
can be provided for specification. So it is useful to know the strengths and weaknesses of a temporal
logic based approach to specifying fault-tolerant systems.

2.1 The logic XL

Only a brief introduction to the logic is given here - for details see [9]. Systems are modelled as finite
state machines, i.e., by a set of states S and by a deterministic next state function Y : 5 -> 5. (Note that
the state space is modelled as a lattice which allows a certain amount of non-determinism to be expressed

implicitly [6, 17].) . . ,. ^
The specification is done using the temporal logic TL [10]. The core of TL is a set of predicates

which allows the description of the instantaneous state of the system, e.g. whether a node m a circuit
has a certain value or whether two nodes are related in a certain way. We denote the set of core simple
predicates G. Typical predicates might be: [Clk] = H (is the clock high?); [Reset] = L (is the reset
line low?); and [Score] < 16 (is the value of group of lines identified by Score, when considered as a
bit-vector, less than 16?).

Predicates are combined using logical operators such as conjunction and negation, and temporal
operators which allow us to refer to time-dependent behaviour. TL has two temporal operators: next-time
and until In practice, only the next-time operator is used. Although TL is comparatively mexpressive,
it has been used successfully in a range of examples [9], and its simplicity supports a very efficient
model-checking algorithm. The syntax of the logic is given by the following BNF —

TL::= G \ TLATL | -^TL 1 NextTL | TLUntilTL.

While the truth of a predicate is evaluated with respect to a state, the truth of a TL formula is given
with respect to a sequence of states, since it can refer to a number of time instants. The informal seman-
tics is that the first state in the sequence refers to time 0 and successive states in the sequence refer to
successive instants in time. The formal semantics of a formula is given by the satisfaction relation Sat
(Sat: 5"^ X TL -> Q). Given a sequence a and a TL formula g. Sat returns the truth of g with respect to
the sequence a. Notation: Let a = sosiS2 ■ • • be a sequence in S: then ai = su and a>i = SjSi+i....

Definition 2.1. Semantics o/TL
1. Ifg e G then Sa.i{a, g) = g{so). 2. Sat{cr,gAh) = Sat(cr,5) ASat(cr,/i)
3. Sat((7,->p) = -iSat(a,3) '^- Sat(cr,Next5) = Sat(cr>i,g)
5. Sat(CT,ffUntil/i) = V^o(Sat(CT>o,5) A ... A Sat(a>i_i,5) A Sat(CT>i/i,))

Examples and Derived Operators: Disjunction and implication are examples of derived operators.
Other derived operators are possible. The most important derived operator is the During [) operator

defined as: During[(/o,to),... , (/„,i„)] g = A'J_Q{A^^J. Next'^g), which asks whether g is true
from time /o through to, fi through ti,... , and from /„ through tn- Here are some examples.

• diff {[Output], XI + X2) < 2 * delta. Is the absolute difference between the value on the set of
hues denoted by Output and the sum of xi and X2 less than 2 x deltal (Names of state components
are in square brackets, so here Output is the name of a state component, while xi, 0:2 and delta are
variables and diff is a function.)

• [Clk] = H] A Next^°([CZfc] = LA[Reset] = L): at time 0, is the clock high, and at time 10 are the
clock and reset lines low?

• During [(0,9), (20,29)] {[Clk = L]) A During [(10,19), (30,39)] {[Clk = H]) A

During [(0,2)] {[Reset] = H) A During [(3,39)] {[Reset] = L)

The formula asks if the clock is low for 10ns, then high for 10ns, then low for 10ns, and then high
for 10ns; and whether the reset Une is high for 3 ns (time 0 through 2 inclusive), and then low from
time 3 to time 39.

2.2 Specification of systems

The specification of a system's nominal behaviour is given by a set of assertions. Each assertion consists
of a pair of TL formulas, and is written like this: {g=^h). If a model M satisfies this assertion, in
every run of the system in which g is true, h is true too. g, the antecedent, can be thought of as supplying
the 'input' or 'stimulus' to the circuit, while h, the consequent is the expected reaction to the stimulus.
Where necessary we write M \= {g=^h) to emphasise that the assertion is about model M.

Both functional and timing properties can be specified this way. For example, the following specifica-
tion could describe the behaviour of a multiplication circuit, describing the result (including bit-widths),
when the inputs must be stable and when the output will be stable:

During [(0,9), (20,29)] {[Clk = L]) A During [(10,19), (30,39)] {[Clk = H]) A

During [(0,39)] [A] = x[7 - 0] A[B] = y[7 - 0] A

During[(35,39)] [C] = {x x y)[15 - 0]

Significant technical detail has been omitted here. For example, the state space is a lattice - which
is used for abstraction - and the truth domain is a four-valued logic rather than a boolean one. Partly
the omission is for space reasons, but also because the methodology of verifying fault tolerance systems
proposed here does not rely on the particular temporal logic used, or the model-checking algorithm used.
Interested readers should consult [9, 10].

2.3 Symbolic Trajectory Evaluation and the VossProver Verification system

Symbolic trajectory evaluation (STE) is a model-checking algorithm due Bryant and Seger [17], and
extended by Hazelhurst and Seger [9]. It is particularly suited for hardware verification, especially
where accurate models of system behaviour, including timing are important. STE has a complementary
compositional theory, and has been applied to a range of different circuits [9].

The VossProver verification system is built on top of Seger's Voss system [16]. The Voss system
consists of three major components: an efficient implementation of binary decision diagrams [5]; an

event driven symbolic simulator with comprehensive delay and race analysis capabilities; and a general
purpose, functional language called FL. STE's compositional theory has been implemented as a simple
proof system in the VossProver [8]. Using FL as a script language, a verifier can interact with the proof
system to either perform STE on a circuit or to use the compositional theory.

Circuits to be verified are represented internally as finite state machines. These FSMs are constructed
automatically from gate-level or switch-level circuit descriptions and a number of standard input formats
are supported. Voss also has its own format, called EXE. The FSM models that Voss builds are accurate
models of the circuits, including timing.

3 Specification and verification of fault tolerance

3.1 Specifying fault tolerance properties

A fault is modelled with two components: a trigger and a corresponding action. The idea is that the
circuit behaves normally, but that whenever the trigger is true, the behaviour of the circuit is modified (as
little as possible) so as to make the action true as well. To specify fault tolerance properties, assertions
are generalised to contain four pieces of information (the antecedent and consequent as before; a fault
trigger; and a fault action) and is denoted thus g =» h where 6 triggers (j) (called f-assertions).

Informally, the intended meaning of g =» h where 9 triggers (j> is that in every run of the machine
M, whenever g is true, so is h whether or not the fault described by 9 triggers cj) occurs. Since the
antecedent, consequent, trigger and action may refer to the same circuit components and variables (or
different ones), an f-assertion can express a variety of behaviours in the face of faulty and non-faulty-
behaviour.

In this framework, the trigger and the action can be any TL formulas. However, the exploratory study
of Section 4 makes the following restrictions: only the non-temporal fragment of the logic can be used;
and the action must non-ambiguously describe the fault for any affected nodes in the circuit.

The primary motivation of this restriction is not so much ease of implementation and efficiency of
verification but simplicity of specification. The semantics of what is meant when temporal operators
are used in both the trigger and action are tricky and requires some study. Examining the strengths and
weaknesses of just using the non-temporal fragment of the logic is a meaningful and useful start, and
indicates where extensions are necessary.

3.2 Modelling faults

So far we have modelled the finite state machine as if it were monolithic. In fact, for circuit models a
convenient and efficient way to model the circuit is to represent the state of the system as a tuple, with
each node (state-holding component) in the circuit making up one component of the tuple. Thus, if a
circuit has n components, then 5 = C" where C is the set of values that an individual component can take.
Similariy, the next-state function is decomposed into n next-state functions, one for each component. So,
if s = (si,... , Sn), Y(s) = {Yi{s),... , Yn{s)), with each Yi being of type S -^ C. For convenience
we name each node by its index in the tuple description of the state space.

Let 9 triggers (?!> be a fault. Let FA be the set of nodes that are described in ^ and for each node
j e FA, let Vj be the value required for cf) to be true. We modify each Yi so that it reflects the faulty
behaviour if it happens.

- s def iYiis) i ^ FA
Fonnally, define yi(s) = < ,. ,,,, , , . „.

■^ [combine{Yi{s),Vj) i e FA,
where combine combines the correct value and the faulty value in the appropriate way. If 9{s) is false,
combine produces the correct result; if 9{s) is true, combine produces the faulty value. (The actual
implementation of combine is more complex than described here to take into account the lattice state-
space: readers familiar with STE should note that combine is monotonic.

def
The global next state function that takes into account the fault is Y(s) =' (yi(s),... ,yn,(s))).

Finally, we can define our 'faulty' FSM to be M ^= (5, Y).
Note that if all temporal logic formulas were allowed in fault descriptions, then the definitions pre-

sented here would need to be generalised. This is a topic of further research.

Semantics of an f-assertion: Given a model M, the formal semantics of an f-assertion
g =^ h where (j) triggers 6 is given by

•^ N 5 =^ ^ where ^ triggers 0 = M.\={g=^h).

3.3 Verifying f-assertions

The verification of f-assertions is accompHshed by combining STE and the idea of saboteurs presented
in [1]. The basic idea is as follows:

• Suppose we wish to show jVf |= 5 =^ h where (f) triggers 6;

• Construct an observer machine Mo able to observe the state of M. When Mo detects that 0 is
true of the current state of A^, it sets an internal flag to trigger the fault (see also [2, 6] for other
work which has used the idea of observers);

• Construct a saboteur machine Ms that can inject the fault into M. When Mo triggers the fault,
the saboteur 'hijacks' the machine M and injects the fault described by 6.

• A new machine M, which is the composition of M, Mo and Ms is constructed.

• We verify M |= {g=^h).

All the constructions described above are done automatically and the only human intervention required
is the provision of the circuit description and the f-assertion. The algorithms that perform these construc-
tions and compositions have been implemented in the VossProver system.

4 A case study

This section explores the methodology presented in the previous sections through a case study. The
system chosen as a case study is presented in [12] and described in detail in [4]. The overall architecture
of the system is presented in Figure 1.

actuator sensor n r
SI

actuator sensor
n r

S2

actuator sensor n r
S3

network

Figure 1: Overall architecture of system

The system has n channels (here, 3 channels, labelled S], S2 and S3). Each channel communicates
with its environment, taking in data from sensors and then issuing commands to actuators. The channels

communicate with each other on a network. The basic premise of this system is that by implementing
the system with n channels, the system is able to tolerate faults, either of sensors or of the channels
themselves.

The channels operate the same protocol (described in detail in [4]). In each round of operation the
channels all go through 11 phases, and one of the channels acts as master. The protocol works by each
channel reading its own sensor data, broadcasting its sensor data to the other channels, followed by
a process of agreeing on the data to be used and the result produced. There is also a mechanism for
electing a new master.

Fault tolerance is also provided internally. Each channel consists of two nodes and an internal con-
nection. One node is the control node that actually performs the above steps. The monitor node performs
exacdy the same steps, except that it does not communicate its results outside the channel. However, if
the monitor and control produce different results, there is simple circuitry that disconnects the channel
from the external network, ensuring fail-safe behaviour. Also, if either the control or monitor do not read
inputs quickly enough, the channel will be extracted from the circuit. There is an error state into which
a channel goes if such problems are detected; a channel only moves out of the error state if reinitialised.

The implementation examined here was based on the design described and used in [4]. That imple-
mentation was given in behavioural VHDL. The design was translated into Voss EXE format (essentially
a gate-level description). Though the translation was done by hand, in principle this step could be au-
tomated. The major difference between the behavioural VHDL and EXE implementations is the way
in which time is dealt with. In behavioural VHDL, it is possible to describe behaviour like 'wait 10/is'
directly, which is not possible at the gate-level. At the gate-level a clock has to be introduced to deal
with time. For convenience of specification, only one clock is used in this implementation, but it would
be straightforward (though the specification would be more cluttered) for each channel to have its own
clock. For the version of the system where data and addresses are 32-bit numbers, the circuit had over
100 000 gates and 10 000 state-holding components (the implementation is rather crude!).

4.1 Verification of nominal behaviour

The specification and verification of the nominal behaviour of this system (i.e. the behaviour without
faults) is an interesting exercise in its own right. However, as the main point of this paper is the specifi-
cation and verification of fault-tolerant behaviour only a few points are sketched here. More detail can
be found in [7].

A complete specification requires many assertions to be given. In the case study, six sample assertions
were verified. The two basic goals were to show that:

• When the system is initialised, the first channel initialised is declared master, and the first round
of operation is correct.

• If at the beginning of a round the system is in a consistent state, and one of the channels is the
master, then the circuit works correctly and ends the round in a consistent state.

Description of clock: As this circuit is clocked, we need to refer to the clock. The TL formula,
ClockAnt is defined to do this. The clock goes up and down for 30 clock cycles each of 100ns; for the
first half of the cycle the clock is low and the second half it is high. Formally the definition is:

During [(0, 49), (100, 149), ..., (2900, 2949), (3000, 3049)] Clock = F and
During [(50, 99), (150, 199), (2950, 2999), (3050, 3099)] Clock = T

Specifying the new master: The informal specification of the circuit is that at the end of each round,
tiiat channel which had the sensor that produced the median value of all sensor values should be elected
master, i.e., if the channel picked the right value, it should be the master next round. This turned out
to be an interesting property to specify. A direct translation of the informal specification turns out to be
wrong since more than one channel can pick the same sensor value. Instead this property is specified as:

For each channel, if it is the master then it picked the median value; and exactly one of the
channels is the master.

The formal definition is given by

During (2700, 2749)
(if_c SlcontrPstatus then_c sl_got_med) & (if_c S2cont:Pstatus then_c s2_got_med) &
(if_c S3cont:Pstatus then_c s3_got_med) & exactly_one_master_active

where Sxcont: Pstatus is a flag that indicates whether channel x is the master. The auxiliary formula
sl_got_medis defined to be si [3-0]= median [si [3-0] , s2 [3-0] , s3 [3-0]] (and simi-
larly for channels 2 and 3). exactly_one_master is just the exclusive or of the status components
of each channel (the component has a high voltage if it is the master, a low voltage otherwise).

4.2 Verifying fault tolerance behaviour

As with the nominal behaviour, many aspects of the fault tolerance behaviour can be checked. A primary
criterion for a specification language is that it should allow the properties to be expressed in meaningful
and concise way. We need experience in specifying fault-tolerant behaviour and this is one of the goals of
the paper. The examples given below illustrate the type of fault tolerance properties that can be checked.

Stuck at faults: This is a fault which always occurs, or at some time becomes true always. Here is
an example of how such a fault can be modelled: t triggers {[Slcontnwval] = f). This says that the
network validation signal of channel SI is always false. We want to show that in this case, the other two
channels still work, and agree on the right value (in this implementation, the median of two numbers is
the minimum of two).

We define the antecedent Ant as

ClockAnt & network_signal=F & (During (0,10) S2init=T)&(During (11, 3099) S2init=F)Sc
(During (0,200)(Slinit=T & S3init=T)) & (During (201,3099) Slinit=F & S3init=F) &
(During (1500, 1599) Slinput=sl[2-0] & S2input=s2[2-0] & S3input=s3[2-0])

This is the first result proved (here we assume that the output is twice the sensor value agreed on by the
channels).

Ant==»
During (2600, 2649)

S2output=2*min[s2[2-0],s3[2-0]][3-0] and S3output=2*min[s2[2-0],s3[2-0]][3-0]
Fault assumption: stuck at fault : Slcontnwval = F

Expressing relationships In the above example, the consequent is too strong in one way — another
implementation might choose the maximum of two values as the median. In another sense it is too weak,
since it does not really make explicit the notion of fault tolerance that we want. Here is an alternative
result — logically weaker than the previous one, but it gives a more meaningful result. The essence of
this result is: provided the sensor values are within a certain range of each other, then the output of the
two working channels will be within some acceptable range from the median of all three sensor values.

Ant ==>>
During [(2600, 2649)] if_c well_behaved_sensors then_c well_behaved_output

Fault assumption: stuck at fault : Slcontnwval = F

where well_behaved_sensors is defined to be:

diff [max [si[2-0],s2[2-0],s3[2-0]],min [si[2-0],s2[2-0],s3[2-0]]] < delta[2-0]

and well_behaved_outputis defined as

diff [S2output, (2*median [si[2-0],s2[2-0],s3[2-0]]) [3-0]] < 2*delta[2-0]

Provided the difference between the maximum and the minimum of the sensor values is 5 (for any 3-bit
number 6), then the output value of S2 (and analogously S3) will be within 26 of the median of the right
result if SI fails (i.e., if SI fails, S2 and S3 will be almost right). 6 is symboUc - i.e., we verify the
result for all values of 6 within a certain range. Also note the care that has to be taken in specifying
the bit-widths of the numbers concerned. Again there is some tedium here and it certainly clutters the
specification, but it is a detail that needs to be taken care of (since the desired fault-tolerant result is not
true if 6 is too large, because the system does finite arithmetic). Therefore, the specification precisely
describes the fault tolerance limitations.

Triggering faults on input values: The antecedent here is the same as for the stuck at fault. But here,
we assert that the fault is only triggered for some values of the input. The consequent then shows that if
the fault is triggered we get one result, while if it is not triggered we see the nominal behaviour ('7' is
used as the synchronisation signal on the network.)

Ant ==>>
During [(2600, 2649)]

S2output = if {sl[2-0] =7) then (2*min [s2 [2-0],s3 [2-0]]) [3-0]
else (2*median [si [2-0],s2 [2-0],s3 [2-0]]) [3-0]

Fault assumption — Trigger : si [2-0] = 7; Fault : Slcontnwval = F.

Triggering faults on state information: Faults can also be triggered on state information. This is
useful when it is difficult to know when (or even iO a fault should be triggered using only input values or
time. In this example, we insert an error into SI when it gets into a state in which it is about to broadcast
on the network (it broadcasts 0, rather the right sensor value). Note we force the same error into the
control and the monitor node (otherwise it would automatically get extracted from the circuit).

^^^ ==» During [(2600, 2649)] S2output= {2*median [0,s2[2-0],s3[2-0]])[3-0]

Fault assumption: ^-, ^ n
Trigger: Slcont:Pstinterchange and Slcont:Pmyid; Fault: Slcontdata=0 and Slmontdata-0

Verifying fault-checking components: At a lower level of abstraction some of the circuitry that imple-
ments the fault tolerance can, of course, be checked for its functional behaviour directly. For example, in
this circuit the monitor and control nodes check each other. We can show that the circuitry that peri^orms
this checking will detect errors. This is straight-forward.

4.3 Computational cost

To assess the practical worth of using formal verification, we need to consider the computational cost,
since the computational costs are non-trivial. Of course, one must assess these costs in terms of the costs
of not finding errors. And it is often possible to verify smaller versions of design at early stages so that
even if the final verification takes many hours to run, during design and implementation the verification
algorithm can be used effectively. Nevertheless, computational costs are critical.

Table 1 shows the cost of verifying the nominal and FT behaviour. The largest circuit verified had
approximately 10000 state holding components and 150 000 gates. The verification was run on a 500
MHz Pentium II. Six nominal properties and six FT properties were verified, for four different versions
of the circuit (varying the datapath bit-width from 4 to 32). For each run, the size of the circuit and the
cost of the verifications is shown in the table.

The results show that the cost of verifying the circuit are well within the capacity of the VossProver
tool (especially if one considers the fact the figures are inflated by the overheads of loading the system,
building the circuit etc, which usually only has to be done once a session). The cost of verification
appears to grow more quickly than the number of gates (but still logarithmic in the size of the state
space, though a more through analysis is needed here).

8

Bit-width 4 8 16 32
Number of gates 26000 50000 85000 150000
Cost for nominal properties (s) 63 85 128 308
Cost for FT properties (s) 19 31 69 275

Table 1: Cost of verification of nominal and FT properties in seconds

Human cost: Specification requires significant human insight. The verification of all results shown
here is completely automatic (though this is not something that we can expect at this stage in general).

5 Conclusion

This paper has examined the use of formal methods in verifying fault-tolerant systems' designs, present-
ing an approach to specifying and verifying fault-tolerant systems. The logic used also allows a range
of fault conditions to be expressed. These fault conditions are given as trigger-action pairs: the trig-
ger indicates when a fault will occur and the action says what type of fault occurs. Using the ideas of
saboteurs [1], the method of symbolic trajectory evaluation can be generalised to be able to verify FT
properties.

A case study was performed to evaluate the proposed approach. Overall, the case study shows that
the approach is successful. The nominal behaviour of the circuit was verified, and then a range of FT
properties were examined including: stuck at faults; faults triggered by input values; and faults triggered
by state conditions.

In addition, the expected behaviour could be modelled exactly (e.g., the output is x) or approxiinately
(e.g., the output is within a certain range). It is also possible to verify directly that certain fault-monitoring
circuitry performs its task. The experimental results also showed that the computational costs of STE
were quite reasonable.

Future research: There are a number of issues for future research:
Language for specifying fault tolerance: The case study explored the use of the non-temporal

fragment of TL for specifying the trigger-action pairs. This proved capable of expressing a range of
different behaviour. We need to do more case studies to get experience in what type of FT properties
need to be proved, in order to find where the limits are. It appears that allowing temporal operators in
both triggers and actions would be useful, and the framework of using observers and saboteurs should be
able to cope with the extension. One particular anticipated difficulty is the specification of both absolute
and relative times in the fault specification.

Use for determining fault tolerance coverage: One interesting possibility is to generalise the spec-
ification of the fault and/or antecedent, expecting the verification to fail. The point of this is that the
information given by the VossProver explaining why the verification failed could be used to determine
fault tolerance coverage.

Compositional theory: A very important technique to overcome the state explosion problem that
bedevils symbolic model checking is the use of compositionality. STE has a simple but successful
compositional theory that has been implemented in the VossProver [8]. If we wish to use STE to deal
with fault tolerance we need to extend the theory for combining assertions to a theory that deals with
combining f-assertions.

Improving the performance of algorithms: And, of course, all algorithms tan benefit from improve-
ment. Even though in the case study chosen the STE algorithm could easily prove the required assertions
and f-assertions, the insatiable demands for memory and CPU cycles needs to be met....

Acknowledgements:

This work was funded in part by the South African National Research Foundation and the Centre National
de la Recherche Scientifique.

References
[1] J. Arlat, J. Bou6, and Y. Crouzet. Validation-based Development of Dependable Systems. IEEE Micro, 19(4):66-79,

Jul-Aug 1999.
[2] I. Beer, S. Ben-David, D. Geist, R. Gewirtzman, and M. Yoeli. Methodology and system for practical formal verification

of reactive liardware. In D.I. Dill, editor, CAV '94: Proceedings of the Sixth International Conference on Computer Aided
Verification, Lecture Notes in Computer Science 818, pages 182-193, Berlin, June 1994. Springer-Verlag.

[3] C. Bernadeschi, A. Fantechi, S. Gnesi, and A. Santone. Formal validation of fault tolerance mechanisms. In Digest of
FastAhstracls of the 28th International Symposium on Fault-Tolerant Computing, pages 66-67. IEEE Computer Society
Press, 1998. http://www.chillarege.com/ftcs/fastabstracts/389.html.

[4] J. Bou6. Test de la Tolerance auxfautes par injection defautes dans des modeles du simuation VHDL. PhD thesis, Institut
NationalPolytechniquedeToulouse, November 1997. LAAS Report 97503.

[5] R.E. Bryant. Symbolic Boolean Manipulation with Ordered Binary-Decision Diagrams. ACM Computing Surveys,
24(3):293-318, September 1992.

[6] S. Hazelhurst. Compositional Model Checking of Partially-Ordered State Spaces. PhD thesis. University of British
Columbia, Department of Computer Science, 1996.

[7] S. Hazelhurst and J. Ariat. Specifying and verifying fault-tolerant hardware. LAAS Report 99514, Laboratoire d'Analyse
et d'Architecture des Systemes, Centre National de la Recherche Scientifique, December 1999.

[8] S. Hazelhurst and C.-J.H. Seger. A Simple Theorem Prover Based on Symbolic Trajectory Evaluation and BDD's. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 14(4):413-422, April 1995.

[9] S. Hazelhurst and C.-J.H. Seger. Symbolic Trajectory Evaluation. In Kropf [13], pages 3-79.

[10] S. Hazelhurst and C.-J.H. Seger. Model checking lattices: Using and reasoning about information orders for abstraction.
Logic Journal of the IGPL, 7(3):375-411, May 1999.

[11] M.-C. Hsueh, T. K. Tsai, and R. K. Iyer. Fault injection techniques and tools. Computer, 30(4):75-82, April 1997.

[12] H. Kopetz. The time-triggered approach in real-time system design. In B. Randell, J.-C. Laprie, H. Kopetz, and B. Little-
wood, editors. Predictably Dependable Computing Systems, Basic Research, pages 53-66. Springer, 1995.

[13] T. Kropf, editor. Formal Hardware Verification: Methods and Systems in Comparison. State of the Art Survey Lecture
Notes in Computer Science 1287. Springer-Veriag, Beriin, 1997.

[14] S. Owre, J. Rushby, N. Shankar, and R von Henke. Formal Verification for Fault-Tolerant Architectures: Prolegomena to
the Design of PVS. IEEE Transactions on Software Engineering, 21(2): 107-125, February 1995.

[15] J. Rushby. Systematic Formal Verification for Fault-Tolerant Time-Triggered Algorithms. IEEE Transactions on Software
Engineering, 25(5):651-660, 1999.

[16] C.-J.H. Seger. Voss — A Formal Hardware Verification System User's Guide. Technical Report 93-45, De-
partment of Computer Science, University of British Columbia, November 1993. Available by anonymous ftp as
ftp://ftp.cs.ubc.ca/pub/local/techreports/1993/TR-93-45.ps.gz.

[17] C.-J.H. Seger and R.E. Bryant. Formal Verification by Symbolic Evaluation of Partially-Ordered Trajectories. Formal
Methods in Systems Design, 6:147-189, March 1995.

[18] M. Sheeran and G. Stalmarck. A tutorial on Stalmarck's procedure for prepositional logic. Formal Methods in System
Design, 16(l):23-58, January 2000.

10

A Stream-based Framework for
Reasoning with STE and other LTL

Verification Formalisms

John O'Leary

Strategic CAD Labs

Intel Corporation

5200 NE Elam Young Pkwy

Hillsboro, OR 97124, USA

joleary@ichips.intel.com

Tom Melham

Dept of Computing Science

University of Glasgow

Glasgow, Scotland, G12 8QQ

tfm@dcs.gla.ac.uk

Pagel

Motivation

STE ckt A C

\
(theorem proving) => OKAY?

/ SMC ckt (G(r->F a))

• Use the tool most suited for each sub-task
• Express and verify properties beyond the reach of

a single model checking run

Page 3

Our approach

• Combine STE and SMC in a higher order logic
theorem prover
- A shallow embedding enables semantic reasoning about

verification results

• Employ reflection to
- Make links between model checking and higher order

logic exp/Zcrt axioms rather than implicit in the metalogic
- Enable a lightweight, logically-coherent bookkeeping

system for model-checking runs
- Make calls to model checkers explicit in proofs

Page 4

Logical architecture
Higher order logic

[ckt 1= p AND c

j ^ ^^ \
t ckt 1= p ckt 1= p ~> c

I SMC_ax f 1^ cLSTE_ax

i 3h. SMC ckt h «p» 3h.c 0 (cLSTE p h ckt)

i ^ ^ I i bookkeepi.ng c

t
SMC ckt h «p» cLSTE p h ckt

' '"f

Forte

Pages

Physical architecture

Higher order logic

SMC ckt h «p» cLSTE p h ckt

Forte

\ /

=0:0-0-

Page 6

LTL

• A subset of Intel's ForSpec Temporal Language

LTL f ::= value n n € Nd
flAf2

NEXTf
f1 UNTIL f2

Page 7

LTL semantics

• state (assigning each node a Boolean value)
St = Nd -> bool

• Trace (a sequence of states)

Tr = nat -> (Nd -^ bool)

• Satisfaction
_ sat _ :: (nat, Tr) -^ LTL -> bool

• Examples:

i,a sat [value n]

\,o sat [f1 A f2]
i,a sat [NEXTf]

iff ai n
iff i.g sat fm and la sat \f2]

iff i+1.asat[f|
Page 8

LTL in higher order logic

• LTL operators are shallowly embedded as
functions of type nat -> Tr -> bool

• Example:

i,a sat lf1 A f2] iff \,a sat [fl] and i.a sat [f2]

def
p && q =

\t.\s. (p t s) AND (q t s);

Pages

LTL in higher order logic

• A circuit satisfies a property iff all its traces do
• We can treat in_L :: Tr->f sm->bool as an

uninterpreted predicate for our purpose

ckt \=''f =
Forall s. (s in L ckt) ==> p 0 s;

Page 10

Reasoning in LTL

NEXT_and =
|- Forall p. Forall q.

NEXT (p && q)

(NEXT p) && (NEXT q)

time_shift =
|- Forall ckt. Forall p.

(ckt 1= p)

(ckt 1= ALWAYS p)

Page 11

Logical architecture
Higher order logic

ckt 1= p AND c

LTL

ckt 1= p ckt 1= p ~> c

SMC ax (1 cLSTE ax

; -. 1^

;
3h. SMC ckt h «p» 3h.c 0 (cLSTE p h ckt) j

\ bookkeeping C i

SMC ckt h «p» cLSTE p h ckt

Forte

Page 12

SMC

SMC ckt usefuls frees «p»

- constructs a specification automaton from thie LTL
property p using standard tableau construction, runs the
model checker and returns T/F

- usefuls and frees are hints for pruning the circuit

- Reflection: «p» means "the syntax of p"

Page 13

Interface to SMC, using reflection

SMC_ax "=
|- Forall ckt. Forall p.

(WF «p») AND
(Exists usefuls. Exists frees.

SMC ckt usefuls frees «p»)

(ckt 1= p)

Page 14

Conventional solution

• Interface to SMC is implicit:
- A metafunction ink_SMC_ax takes the circuit, pruning info,

and property as arguments, calls SMC, and generates the
appropriate axiom if SMC succeeds

mk SMC ax ckt [] [] «spec»

- (ckt 1= spec)

Pago 15

STE

cLSTE asstimp hints ckt
- provides a trace-based interface to standard STE
- cLSTE returns a trace (int->string->bool) generated

under assumption asm that can be used to check
satisfaction of a bounded LTL formula

cLSTE_ax "=
|- Forall ckt. Forall asm. Forall p.

(Exists hints.
p 0 (cLSTE asm hints ckt))

==>
(ckt 1= (asm --> p))

Page 16

Example circuit

a T

b -r

vld

elk
rst

itHcKS ZZTrS-Tpup

qclk

Page 17

Helpful definitions

• It is convenient to introduce these definitions

let
let

falling c = c &&
rising c = (! c)

NEXT (! c) ;
&& NEXT c;

letrec repeat 0 f p =
/\ repeat n f p =

P
f (repeat (n- -1) f P);

let weak mutex a b =

Page 18

! (a && b) ;

Control property
let ctl_Epec =

(ALWAYS (elk -= ! (NEXT elk))) SS
(ALWAYS (falling elk —>

Heak_mutex vld (repeat 2 NEXT vld)))

—>
ALWAYS (

(falling elk) &fi (value "rst") —>
ALWAYS (

(falling elk S£ vld S&
! (value "rst") && repeat 2 NEXT (! (value "rst")))

—>
(repeat 2 NEXT pup) £S
(repeat 4 NEXT pup)

)
);

vld

elk
rst

itHoH I ^pLTpup

qclk

Page 19

Proving the control property

S Evaluation

I - WF «ctl_spec» AND
SMC ckt ["c2c"] [] «ctl_spec»

V'bookkeeping"

I- WF «ctl_spec» AND
(Exists usefuls. Exists frees.

SMC ckt usefuls frees «ctl_spec»)

SMC ax
\

ckt 1= ctl_spec

Page 20

10

Datapath property

pup-
let dp_spec =

(ALWAYS (elk ~= ! (NEXT elk))) // dp_spec_a
—>
ALWAYS (// dp_spec_c

(falling elk &&
repeat 2 NEXT pup &£ repeat 4 NEXT pup)
—>
((repeat 5 NEXT c) ~= ! ((NEXT a) | | (NEXT b))))

Page 21

Proving the datapath property

Evaluation
/

I - dp_spec_c 0
(cLSTE dp spec a dp hints ckt)

"bookkeeping ■7
I - Exists hints.

dp_spec_c 0
(cLSTE dp_spec_a hints ckt)

cLSTE_ax <

ckt 1= dp spec a -> dp_spec_c

Page 22

11

Combined property

let top_spec =

(ALWAYS (elk ~= ! (NEXT elk))) &&

(ALWAYS (falling elk —>
weak_mutex vld (repeat 2 NEXT vld)))

—>
ALWAYS (

(falling elk) &fi (value "rst")

—>
ALWAYS (

(falling elk && vld SS
!(value "rst") &S repeat 2 NEXT (!(value "rst")))

~>
((repeat 5 NEXT c) ~= ! ((NEXT a) I I (NEXT b))))) ;

Page 23

Proving tiie combined property

I - ckt I= ctl spec
- ckt 1= dp_spec_a

-> dp_spec_c

Reasoning
inLTL

- ckt I= top spec

Page 24

12

Summary

STE, SMC are combined within a higlier order logic
theorem prover with reflection
- Calls to model checkers are explicit in proofs

- Including directives, hints, etc
- Theorem prover Is used as a bookkeeping tool to manage

model checking runs
- Abstracting away directives, hints
- Extensions can handle simple reasoning: case-splitting,

assume-guarantee
- Explicit links between STE, SMC and specification logic
- Spec logic is shallowly embedded in higher order logic

- Full pov\/er of the theorem prover is available for complex
reasoning

Page 25

13

Z3[HC(

UNIVERSITE,
JOSEPH R)URIER'
lam'xs.TEanoLOGrE.HiiicnE .

k INK/A

o ^

^--'ESTERiLy

Thf Iruitfd Deiign Chiin Comp*ny

PolySp^e ^7t i^france telecom
/ l..c..<.i.>.... Trusted Logic t ■ ■»- KCKU

mac

Location: Domaine Universitaire, GRENOBLE

